Detail View
Video Instance Segmentation with Context-Aware Representations
Citations
WEB OF SCIENCE
Citations
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | 임성훈 | - |
| dc.contributor.author | Jiwan Seo | - |
| dc.date.accessioned | 2026-01-23T10:57:17Z | - |
| dc.date.available | 2026-01-24T06:00:41Z | - |
| dc.date.issued | 2026 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/59730 | - |
| dc.identifier.uri | http://dgist.dcollection.net/common/orgView/200000943230 | - |
| dc.description | 비디오 인스턴스 세그멘테이션(Video instance segmentation), 객체 추적(Instance tracking), 인스턴스 세그멘테이션(Instance segmentation), 대표 학습(Representation learning) | - |
| dc.description.abstract | We introduce the Context-Aware Video Instance Segmentation (CAVIS), a novel framework designed to enhance instance association by integrating contextual information adjacent to each object. To efficiently extract and leverage this information, we propose the Context-Aware Instance Tracker (CAIT), which merges contextual data surrounding the instances with the core instance features to improve tracking accuracy. Additionally, we design the Prototypical Cross-frame Contrastive (PCC) loss, which ensures consistency in object-level features across frames, thereby significantly enhancing matching accuracy. CAVIS demonstrates superior performance over state-of-the-art methods on all benchmark datasets in video instance segmentation (VIS) and video panoptic segmentation (VPS). Notably, our method excels on the OVIS dataset, known for its particularly challenging videos. Keywords: Video instance segmentation, Instance segmentation, Representation learning, Instance tracking|본 논문에서는 객체 주변의 문맥 정보를 통합하여 인스턴스 간 연관성을 강화하는 새로운 프레임워크인 Context-Aware Video Instance Segmentation (CAVIS)을 제안합니다. 제안하는 방법은 각 객체에 인접한 문맥 정보를 효율적으로 추출하고 활용하기 위해, 인스턴스의 핵심 특징과 주변 문맥 정보를 결합하여 추적 정확도를 향상시키는 Context-Aware Instance Tracker (CAIT)를 도입합니다. 또한, 프레임 간 객체 수준 특징의 일관성을 보장하기 위해 Prototypical Cross-frame Contrastive (PCC) loss를 설계하였으며, 이를 통해 객체 매칭 정확도를 크게 향상시킵니다. 실험 결과, CAVIS는 Video Instance Segmentation (VIS)과 Video Panoptic Segmentation (VPS)의 모든 벤치마크 데이터셋에서 기존 최신 기법들을 능가하는 성능을 보였습니다. 특히, 복잡하고 난이도가 높은 영상으로 구성된 OVIS 데이터셋에서 뛰어난 성능을 달성함을 확인하였습니다. 키워드: 비디오 인스턴스 세그멘테이션, 객체 추적, 인스턴스 세그멘테이션, 대표 학습 | - |
| dc.description.tableofcontents | I. INTRODUCTION 1 II. RELATED WORK 3 2.1 Video Instance Segmentation 3 2.2 Advancements in Query-based Networks 3 2.3 Object Tracking with Additional Cues 3 III. METHOD 5 3.1 Preliminary 5 3.2 Context-aware Instance Tracker 6 3.3 Prototypical Cross-frame Contrastive Loss 9 3.4 Training Loss 10 IV. EXPERIMENTS 11 4.1 Implementation details 11 4.2 Datasets 12 4.3 Comparison to State-of-the-Art Methods 13 4.4 Ablation Study 15 4.5 Further Studies 18 4.6 Limitations 19 V. CONCLUSION 22 VI. References 23 VII. 요약문 28 |
- |
| dc.format.extent | 28 | - |
| dc.language | eng | - |
| dc.publisher | DGIST | - |
| dc.title | Video Instance Segmentation with Context-Aware Representations | - |
| dc.type | Thesis | - |
| dc.identifier.doi | 10.22677/THESIS.200000943230 | - |
| dc.description.degree | Master | - |
| dc.contributor.department | Artificial Intelligence Major | - |
| dc.date.awarded | 2026-02-01 | - |
| dc.publisher.location | Daegu | - |
| dc.description.database | dCollection | - |
| dc.citation | XT.AM 서78 202602 | - |
| dc.date.accepted | 2026-01-19 | - |
| dc.contributor.alternativeDepartment | 학제학과인공지능전공 | - |
| dc.subject.keyword | 비디오 인스턴스 세그멘테이션(Video instance segmentation), 객체 추적(Instance tracking), 인스턴스 세그멘테이션(Instance segmentation), 대표 학습(Representation learning) | - |
| dc.contributor.affiliatedAuthor | Jiwan Seo | - |
| dc.contributor.affiliatedAuthor | Sunghoon Im | - |
| dc.contributor.alternativeName | 서지완 | - |
| dc.contributor.alternativeName | Sunghoon Im | - |
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
