Detail View

Composition, Annealing, and Geometric Effects on GMR in Co–Cu Granular Systems

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 유천열 -
dc.contributor.author Jaeyun Choi -
dc.date.accessioned 2026-01-23T10:57:56Z -
dc.date.available 2026-01-23T10:57:56Z -
dc.date.issued 2026 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59747 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000949701 -
dc.description Granular giant magnetoresistance -
dc.description.abstract We systematically investigate the giant magnetoresistance (GMR) properties of granular Co–Cu thin films and nanowire structures, focusing on the roles of composition, annealing conditions, film thickness, and geometrical confinement. Co–Cu alloy films were fabricated by magnetron co-sputtering and subsequently annealed to induce the formation of Co granules embedded in a Cu matrix.
The GMR exhibited a pronounced non-monotonic dependence on annealing temperature, with a maximum observed at approximately 350 °C. Insufficient Co diffusion at lower temperatures resulted in superparamagnetic behavior, while excessive annealing led to Co coalescence and multi-domain formation, suppressing spin-dependent scattering. Composition-dependent measurements revealed that the largest GMR occurs at an effective Co concentration of ~18–19 at.%, where the density of spin-scattering centers is optimized without strong intergranular coupling.
The GMR also showed a non-monotonic dependence on film thickness, with an optimal thickness of ~30 nm. Ultrathin films lacked sufficient granule density, whereas thick films exhibited quasi-three-dimensional conduction paths that diluted interfacial spin-dependent scattering. In addition, granular Co–Cu nanowires with a width of ~400 nm showed unstable and strongly suppressed GMR when annealed after patterning, attributed to altered microstructural evolution under lateral confinement.
These results demonstrate that granular GMR is governed by a delicate interplay between microstructure and conduction-path geometry, providing practical guidelines for optimizing granular spintronic devices and high-sensitivity magnetic sensors.

Keywords: Granular giant magnetoresistance, Spin transport, Co-Cu alloy, 4-probe measurement|본 논문은 Co–Cu 그래뉼라 박막 및 나노와이어 구조에서의 거대자기저항(Giant Magnetoresistance, GMR) 특성을 체계적으로 분석하고, GMR 효율을 지배하는 조성적·구조적·기하학적 요인을 규명하였다. 마그네트론 코스퍼터링을 통해 Co–Cu 합금 박막을 제작하고, 어닐링 조건, 조성비, 박막 두께 및 패터닝 효과에 따른 자기수송 특성을 비교하였다. 어닐링 온도에 따른 GMR은 비단조적 거동을 보였으며, 약 350 °C에서 단일자구 Co 그래뉼라가 균일하게 형성되어 최대 GMR이 관측되었다. 조성비 분석 결과, 명목상 Co:Cu = 15:85 조성에서 실제 Co 농도 약 18–19 at.%가 형성되었고, 이 조건에서 최적의 GMR 효율이 나타났다. 또한 박막 두께에 대해서는 약 30 nm에서 GMR이 극대화되었으며, 초박막 및 두꺼운 박막 한계에서는 전도 경로의 변화로 GMR이 감소하였다. 반면 나노와이어 패턴 이후 어닐링을 수행한 경우, 미세구조의 비균일성으로 인해 안정적인 GMR이 관측되지 않았다. 본 연구는 그래뉼라 GMR이 미세구조와 전도 경로의 차원성에 극도로 민감함을 보여주며, 조성·열처리·기하학 제어를 통한 공정 최적화의 중요성을 제시한다.

핵심어: 거대자기저항, 그래뉼라 박막, 어닐링 효과, 조성 의존성, 기하학적 구속
-
dc.description.tableofcontents Ⅰ. Introduction 1
Ⅱ. Theoretical background 3
2.1 Giant Magnetoresistance 3
2.1.1 Multilayer GMR 4
2.1.2 Granular GMR 5
2.2 Magnetization behavior and interparticle interaction 6
2.3 Structure-Transport coupling 8
Ⅲ. Method 10
3.1 DC magnetron sputtering 10
3.1.1 Co-sputtering 12
3.2 Energy Dispersive X-ray Spectroscopy(EDS) 15
3.3 Annealing 16
3.4 4-probe measurement 17
3.4.1 GMR measurement 20
3.5 Photolithography 22
3.6 E-beam lithography 24
Ⅳ. Result & discussion 26
4.1 Sample characteristic 26
4.2 Annealing-temperature dependence of GMR 27
4.3 Co-Cu composition dependence of GMR 28
4.4 Geometrical dependence of GMR 31
Ⅴ. Conclusion 36
-
dc.format.extent 41 -
dc.language eng -
dc.publisher DGIST -
dc.title Composition, Annealing, and Geometric Effects on GMR in Co–Cu Granular Systems -
dc.title.alternative 코발트-구리 그래뉼라 시스템에서 조성, 어닐링 및 기하학적 효과가 거대자기저항에 미치는 영향 -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000949701 -
dc.description.degree Master -
dc.contributor.department Department of Physics and Chemistry -
dc.contributor.coadvisor June-Seo Kim -
dc.date.awarded 2026-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.MM 최73 202602 -
dc.date.accepted 2026-01-19 -
dc.contributor.alternativeDepartment 화학물리학과 -
dc.subject.keyword Granular giant magnetoresistance -
dc.contributor.affiliatedAuthor Jaeyun Choi -
dc.contributor.affiliatedAuthor Chun-Yeol You -
dc.contributor.affiliatedAuthor June-Seo Kim -
dc.contributor.alternativeName 최재윤 -
dc.contributor.alternativeName Chun-Yeol You -
dc.contributor.alternativeName 김준서 -
dc.rights.embargoReleaseDate 2028-02-28 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: