Detail View

Advanced Adhesive Strength Analysis of Composite Electrodes for Rechargeable Batteries

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Advanced Adhesive Strength Analysis of Composite Electrodes for Rechargeable Batteries
Alternative Title
이차 전지 복합 전극의 접착력 고도 분석
DGIST Authors
cheol bakHochun LeeYong Min Lee
Advisor
이호춘
Co-Advisor(s)
Yong Min Lee
Issued Date
2025
Awarded Date
2025-08-01
Type
Thesis
Description
SAICAS, Adhesive strength, Composite electrode, Lithium secondary battery, Rechargeable battery
Abstract

As the demand for high-energy-density and reliable rechargeable batteries accelerates, mechanical integrity—particularly interfacial and cohesive adhesive strength within composite electrodes—has emerged as a critical performance determinant across lithium-ion batteries (LIBs), all-solid-state batteries (ASSBs), and beyond-lithium systems such as lithium–sulfur (Li–S) and zinc-ion batteries (ZIBs). This study comprehensively investigates the role of adhesive strength in enhancing electrode durability, conductivity, and electrochemical stability, focusing on binder distribution and its correlation with performance metrics. By applying the Surface and Interfacial Cutting Analysis System (SAICAS), we achieve high-resolution, depth-specific quantification of adhesion profiles within various electrode architectures. Through combined mechanical and chemical mapping— integrating SAICAS with surface EDX—binder gradients are visualized, and their impact on ionic/electronic transport and structural coherence is evaluated. Advanced electrode designs are explored, including SiO₂- preplanted cathodes, multilayer slurry-cast electrodes, dry-fabricated ASSB cathodes with ionomer binders, and patterned electrodes for oxide-based systems. Additionally, customized SAICAS chambers and substrate strategies are developed for accurate measurements under inert conditions and dry-processed environments. The findings reveal that optimized binder distribution and interfacial adhesion significantly enhance cycling stability, rate capability, and resistance to delamination—offering a strategic pathway for the rational design of next- generation battery systems with improved mechanical reliability and electrochemical performance. Keywords: SAICAS, adhesive strength, composite electrode, Lithium secondary battery, Rechargeable battery.|고에너지 밀도 및 신뢰성 있는 차세대 이차전지에 대한 수요가 급증함에 따라, 리튬이온전지(LIB), 전고체전지(ASSB), 리튬-황(Li–S), 아연이온전지(ZIB)와 같은 다양한 이차전지 시스템에서 복합 전극 내의 접착력이 성능을 좌우하는 핵심 요소로 부각되고 있다. 본 논문에서는 복합 전극 내 접착력 및 바인더 분포와 그에 따른 기계적 안정성 및 전기화학적 성능 간의 상관관계를 정량적으로 분석함으로써, 접착력 향상을 통한 전극 성능 개선 방안을 종합적으로 고찰하였다. 이를 위해 표면·계면 절단 분석 시스템(SAICAS)을 활용하여 다양한 복합 전극 구조 내 접착력을 깊이별로 고도 정량 분석하였으며, 표면 EDX 분석과 결합해 바인더 분포를 시각화하고, 모델링을 통해 전기전도 및 이온 전달 특성에 미치는 영향을 정밀하게 규명하였다. 구체적으로는 SiO₂를 도입한 후막 전극, 다층 모델 전극, 이온 전도성 바인더 기반의 건식 전극, 그리고 표면 패터닝 처리된 산화물 기반 ASSB 전극 등을 제작하여, 이들의 기계적·전기화학적 성능을 비교 분석하였다. 또한, 수분에 민감한 황화물계 전고체전지 용 전극의 신뢰성 있는 측정을 위해 아르곤 분위기용 SAICAS 챔버를 개발하고, 기계적 고정이 어려운 건식 전극을 위한 보조 지지체를 적용하여 분석 정확성을 확보하였다. 이러한 분석을 통해, 바인더 분포 및 계면 접착력의 최적화가 전극 탈리 방지, 저항 감소, 수명 향상 등 전극의 성능 및 신뢰성 향상에 결정적인 역할을 함을 입증하였으며, 차세대 고성능 전지 설계를 위한 계면 기계적 진단 및 공정 최적화 전략을 제시하였다.

더보기
Table Of Contents
List of Contents
Abstract i
List of contents ii
List of figures vi

Ⅰ. Introduction 1
1.1 Background and Motivation 1
1.1.1 Roadmap on rechargeable batteries 1
1.1.2 Importance of adhesive property in composite electrodes 2
1.2 Fundamentals of Rechargeable Batteries 4
1.2.1 Lithium-ion Batteries 4
1.2.2 All-Solid-state Lithium Batteries 5
1.2.3 Lithium/Sulfur Batteries 6
1.2.4 Zinc aqueous Batteries 7
1.3 Research Goals 8
ⅠI. Advanced Adhesive Strength Analysis Methodologies 9
2.1 Introduction 9
2.1.1 Comparison of SAICAS and conventional adhesive strength analysis 9
2.1.2 Research field and status of SAICAS analysis for rechargeable batteries 10
2.2 Measurement Principle, Protocols and Methods of SAICAS 12
2.2.1 Measurement Principle and calculation process 12
2.2.2 Constant Load Mode 13
2.2.3 Constant Velocity Mode 13
2.2.4 Top and side precutting 15
2.3 Conclusion 17
ⅠII. Adhesive strength Analysis of Lithium-ion Battery Composite Electrodes 18
3.1 Introduction 18
3.2 Composite electrodes with nano-silica for LIB 19
3.2.1 Introduction 19
3.2.2 Electrode preparation 19
3.2.3 Electrode Characterization 20
3.2.4 Cell assembly 20
3.2.5 Electrochemical analysis 20
3.2.6 Result and Discussion 21
3.2.7 Summary 26
3.3 Multilayer model electrodes for LIB 24
3.3.1 Introduction 24
3.3.2 Electrode preparation 24
3.3.3 Electrode Characterization 25
3.3.4 Cell assembly 26
3.3.5 Electrochemical analysis 26
3.3.5 Computational analysis 26
3.3.6 Result and Discussion 26
3.3.7 Summary 33
3.4 Conclusion 33
ⅠV. Adhesive strength Analysis of All-Solid-State Battery Electrodes 34
4.1 Introduction 34
4.2 Set up process for analysis of highly reactive electrodes 35
4.2.1 Design and construction of Chamber 35
4.2.2 Preliminary test for verification 36
4.3 Composite electrodes with various solvents for sulfide based ASSB 37
4.3.1 Introduction 37
4.3.2 Electrode preparation 37
4.3.3 Adhesive strength analysis 38
4.3.4 Results and Discussion 38
4.3.5 Summary 41
4.4 Ionomer binder-based composite electrodes for sulfide based ASSBs 41
4.4.1 Introduction 41
4.4.2 Electrode preparation 42
4.4.3 Adhesive strength analysis 42
4.4.4 Result and Discussion 43
4.4.5 Summary 44
4.5 Surface-patterned composite electrode for oxide based ASSBs 45
4.5.1 Introduction 45
4.5.2 Electrode preparation 45
4.5.3 Adhesive strength analysis 46
4.5.4 Results and Discussion 46
4.5.5 Summary 48
4.6 Conclusion 49
V. Adhesive strength Analysis of composite electrodes for beyond Lithium Batteries 50
5.1 Introduction 50
5.2 Composite electrodes for Lithium-Sulfur Batteries 51
5.2.1 Introduction 51
5.2.2 Electrode preparation 51
5.2.3 Adhesive strength analysis 51
5.2.4 Results and Discussion 52
5.2.5 Summary 53
5.3 Composite electrodes for zinc aqueous Batteries 53
5.3.1 Introduction 53
5.3.2 Electrode preparation 54
5.3.3 Adhesive strength analysis 54
5.3.4 Result and Discussion 54
5.3.5 Summary 56
5.4 Conclusion 56
VI. Concluding Remark 57
6.1 Introduction 57
6.2 Advanced Approaches to improve the Reliability of adhesive strength analysis 58
6.2.1 Adhesive strength distribution by SAICAS 58
6.2.2 Binder Distribution by Surface SAICAS-EDX 59
6.2.3 Chamber for high reactive Composite Electrodes 60
6.2.4 Additional substrate for dry fabricated Composite Electrodes 61
6.3 References 62
Summary in Korean 65
URI
https://scholar.dgist.ac.kr/handle/20.500.11750/59781
http://dgist.dcollection.net/common/orgView/200000888544
DOI
10.22677/THESIS.200000888544
Degree
Doctor
Department
Department of Energy Science and Engineering
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: