Detail View

Understanding the role of gas diffusion electrodes in steering the CO2 electroreduction pathway

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Jung, Youngran -
dc.contributor.author Velmurugan, Adith Ramakrishnan -
dc.contributor.author Kim, Intae -
dc.contributor.author Kim, Hyeontae -
dc.contributor.author Kim, Geon-Woo -
dc.contributor.author Kim, Ji-Yong -
dc.contributor.author Jeon, Jiwan -
dc.contributor.author Lee, Yujin -
dc.contributor.author Lee, Jae-Chan -
dc.contributor.author Park, Seo-June -
dc.contributor.author Cha, Yeon-A -
dc.contributor.author Ringe, Stefan -
dc.contributor.author Nam, Dae-Hyun -
dc.contributor.author Joo, Young-Chang -
dc.date.accessioned 2026-02-03T20:40:14Z -
dc.date.available 2026-02-03T20:40:14Z -
dc.date.created 2025-12-04 -
dc.date.issued 2026-01 -
dc.identifier.issn 2211-2855 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59900 -
dc.description.abstract Electrochemical CO2 reduction reaction (CO2RR) offers a promising route for converting CO2 into value-added chemicals. GDEs are pivotal for pushing CO2RR toward industrial competitiveness, yet the GDE macro- and nano-structural parameters and their relationship with CO2RR performance remain unclear. Here, we experimentally quantified the intrinsic and extrinsic properties of Cu-based GDEs (28BC, 22BB, 39BB, 36BB) and their CO2RR performance, integrating this with mass-transport simulations. From this, we constructed a GDE structure–CO2RR activity map that reveals two operating windows: A high-current-density (HCD) onset region (−1.50 V (vs. SHE)) at which product selectivity is governed by surface roughness which drives the re-adsorption of CO and further reduction to oxygenates, and competition for surface adsorbed hydrogen. Deeper in the HCD regime (−1.63 V (vs. SHE)), optimal activity requires balancing CO2 transport with surface adsorbed hydrogen coverage, exemplified by one of the GDEs (22BB), whose high roughness and low microporous-layer porosity deliver the highest intrinsic rates for both hydrocarbon and oxygenate pathways while suppressing hydrogen evolution. These findings identify roughness and porosity as the primary, tunable levers for steering Cu-GDE product selectivity, provide actionable design rules for next-generation CO2 electrolyzers and important mechanistic insights. © 2025 -
dc.language English -
dc.publisher Elsevier -
dc.title Understanding the role of gas diffusion electrodes in steering the CO2 electroreduction pathway -
dc.type Article -
dc.identifier.doi 10.1016/j.nanoen.2025.111602 -
dc.identifier.wosid 001632535500004 -
dc.identifier.scopusid 2-s2.0-105022899012 -
dc.identifier.bibliographicCitation Nano Energy, v.147 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Electrochemical CO2 reduction -
dc.subject.keywordAuthor Gas diffusion electrode -
dc.subject.keywordAuthor Local CO2 concentration -
dc.subject.keywordAuthor Porosity -
dc.subject.keywordAuthor Surface roughness factor -
dc.subject.keywordPlus ELECTROCHEMICAL REDUCTION -
dc.subject.keywordPlus CARBON-MONOXIDE -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus CU -
dc.subject.keywordPlus FUEL -
dc.subject.keywordPlus ELECTROLYSIS -
dc.subject.keywordPlus COVERAGE -
dc.subject.keywordPlus ETHYLENE -
dc.citation.title Nano Energy -
dc.citation.volume 147 -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: