Detail View

DC Field Value Language
dc.contributor.author Hu, Xinghao -
dc.contributor.author Lim, Byeong Hwa -
dc.contributor.author Ramulu, Torati Sri -
dc.contributor.author Ding, Junjia -
dc.contributor.author Novosad, Valentine -
dc.contributor.author Im, Mi‐Young -
dc.contributor.author Venu, Reddy -
dc.contributor.author Kim, Kun Woo -
dc.contributor.author Jung, Eun Joo -
dc.contributor.author Shawl, Asif Iqbal -
dc.contributor.author Kim, Eunjoo -
dc.contributor.author Kim, CheolGi -
dc.date.accessioned 2018-05-25T08:34:33Z -
dc.date.available 2018-05-25T08:34:33Z -
dc.date.created 2018-05-25 -
dc.date.issued 2018-06 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/6411 -
dc.description.abstract The precise delivery of biofunctionalized matters is of great interest from the fundamental and applied viewpoints. In spite of significant progress achieved during the last decade, a parallel and automated isolation and manipulation of rare analyte, and their simultaneous on-chip separation and trapping, still remain challenging. Here, a universal micromagnet junction for self-navigating gates of microrobotic particles to deliver the biomolecules to specific sites using a remote magnetic field is described. In the proposed concept, the nonmagnetic gap between the lithographically defined donor and acceptor micromagnets creates a crucial energy barrier to restrict particle gating. It is shown that by carefully designing the geometry of the junctions, it becomes possible to deliver multiple protein-functionalized carriers in high resolution, as well as MCF-7 and THP-1 cells from the mixture, with high fidelity and trap them in individual apartments. Integration of such junctions with magnetophoretic circuitry elements could lead to novel platforms without retrieving for the synchronous digital manipulation of particles/biomolecules in microfluidic multiplex arrays for next-generation biochips. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. -
dc.language English -
dc.publisher Wiley - V C H Verlag GmbbH & Co. -
dc.title Autonomous Magnetic Microrobots by Navigating Gates for Multiple Biomolecules Delivery -
dc.type Article -
dc.identifier.doi 10.1002/smll.201800504 -
dc.identifier.wosid 000435952100006 -
dc.identifier.scopusid 2-s2.0-85046676230 -
dc.identifier.bibliographicCitation Hu, Xinghao. (2018-06). Autonomous Magnetic Microrobots by Navigating Gates for Multiple Biomolecules Delivery. Small, 14(25). doi: 10.1002/smll.201800504 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor biofunctionalization -
dc.subject.keywordAuthor cells sorting -
dc.subject.keywordAuthor lab-on-a-chip -
dc.subject.keywordAuthor microparticles manipulation -
dc.subject.keywordAuthor microrobots -
dc.subject.keywordPlus SURFACE ACOUSTIC-WAVES -
dc.subject.keywordPlus ON-CHIP MANIPULATION -
dc.subject.keywordPlus SINGLE CELLS -
dc.subject.keywordPlus MAGNETOPHORESIS -
dc.subject.keywordPlus SEPARATION -
dc.subject.keywordPlus BEADS -
dc.subject.keywordPlus PARTICLES -
dc.subject.keywordPlus DNA -
dc.subject.keywordPlus MICROPARTICLES -
dc.subject.keywordPlus ACTUATORS -
dc.citation.number 25 -
dc.citation.title Small -
dc.citation.volume 14 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김은주
Kim, Eunjoo김은주

Division of AI, Big data and Block chain

read more

Total Views & Downloads