Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jung, Su Hyun ko
dc.contributor.author Hahn, Young Ki ko
dc.contributor.author Oh, Sein ko
dc.contributor.author Kwon, Se Yong ko
dc.contributor.author Um, Eujin ko
dc.contributor.author Choi, Sung Young ko
dc.contributor.author Kang, Joo H. ko
dc.date.accessioned 2018-09-17T12:52:46Z -
dc.date.available 2018-09-17T12:52:46Z -
dc.date.created 2018-09-10 -
dc.date.issued 2018-08 -
dc.identifier.citation Small, v.14, no.34 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9301 -
dc.description.abstract A major challenge to scale up a microfluidic magnetic separator for extracorporeal blood cleansing applications is to overcome low magnetic drag velocity caused by viscous blood components interfering with magnetophoresis. Therefore, there is an unmet need to develop an effective method to position magnetic particles to the area of augmented magnetic flux density gradients while retaining clinically applicable throughput. Here, a magnetophoretic cell separation device, integrated with slanted ridge-arrays in a microfluidic channel, is reported. The slanted ridges patterned in the microfluidic channels generate spiral flows along the microfluidic channel. The cells bound with magnetic particles follow trajectories of the spiral streamlines and are repeatedly transferred in a transverse direction toward the area adjacent to a ferromagnetic nickel structure, where they are exposed to a highly augmented magnetic force of 7.68 µN that is much greater than the force (0.35 pN) at the side of the channel furthest from the nickel structure. With this approach, 91.68% ± 2.18% of Escherichia coli (E. coli) bound with magnetic nanoparticles are successfully separated from undiluted whole blood at a flow rate of 0.6 mL h−1 in a single microfluidic channel, whereas only 23.98% ± 6.59% of E. coli are depleted in the conventional microfluidic device. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.subject advection flows -
dc.subject bacteria separation -
dc.subject magnetic separation -
dc.subject magnetophoresis -
dc.subject microfluidics -
dc.subject CELLS -
dc.subject PURIFICATION -
dc.subject NANOPARTICLES -
dc.subject DEVICE -
dc.subject NANOMAGNETS -
dc.title Advection Flows-Enhanced Magnetic Separation for High-Throughput Bacteria Separation from Undiluted Whole Blood -
dc.type Article -
dc.identifier.doi 10.1002/smll.201801731 -
dc.identifier.wosid 000442501500013 -
dc.identifier.scopusid 2-s2.0-85052150035 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Jung, Su Hyun -
dc.contributor.nonIdAuthor Oh, Sein -
dc.contributor.nonIdAuthor Kwon, Se Yong -
dc.contributor.nonIdAuthor Um, Eujin -
dc.contributor.nonIdAuthor Choi, Sung Young -
dc.contributor.nonIdAuthor Kang, Joo H. -
dc.identifier.citationVolume 14 -
dc.identifier.citationNumber 34 -
dc.identifier.citationTitle Small -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
ETC 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE