Cited time in webofscience Cited time in scopus

Exploring a Novel Atomic Layer with Extremely Low Lattice Thermal Conductivity: ZnPSe3 and Its Thermoelectrics

Title
Exploring a Novel Atomic Layer with Extremely Low Lattice Thermal Conductivity: ZnPSe3 and Its Thermoelectrics
Author(s)
Yun, Won SeokLee, JaeDong
Issued Date
2018-12
Citation
Journal of Physical Chemistry C, v.122, no.49, pp.27917 - 27924
Type
Article
Keywords
PERFORMANCEBULKMOS21ST-PRINCIPLES
ISSN
1932-7447
Abstract
We survey the thermodynamic stabilities and properties, electronic transports, and thermoelectric possibilities of two-dimensional (2D) ZnPS3 and ZnPSe3, belonging to transition-metal phosphorus trichalcogenides, by employing the first-principles electronic structure calculation. Our first-principles calculation accompanying ab initio molecular dynamics and phonon calculation predicts that a single-layer (1L-) ZnPSe3 would be thermodynamically stable; in addition, electron and hole mobilities of 1L-ZnPSe3 amount to ∼440 and ∼400 cm2 V-1 s-1, respectively, which are comparable to 1L-MoS2. More interestingly, the lattice thermal conductivity of 1L-ZnPSe3 is found to be lower than any other 2D material, which could reach the lowest, i.e., ∼0.13 W m-1 K-1 at room temperature. In contrast, the thermoelectric figure of merit of the pristine 1L-ZnPSe3 is just ∼0.8 under optimal condition. Nevertheless, this is a very promising indication for a thermoelectric application of 1L-ZnPSe3 because other elements to determine the thermoelectric figure of merit could be possibly engineered through a manipulation of underlying electronic structures. With this finding, 1L-ZnPSe3 would be added as a novel promising candidate to a list of 2D thermoelectric materials. © 2018 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/9534
DOI
10.1021/acs.jpcc.8b09566
Publisher
American Chemical Society
Related Researcher
  • 이재동 Lee, JaeDong
  • Research Interests Theoretical Condensed Matter Physics; Ultrafast Dynamics and Optics; Nonequilibrium Phenomena
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Light and Matter Theory Laboratory 1. Journal Articles
Division of Nanotechnology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE