Detail View

Highly conductive and stable Mn1.35Co1.35Cu0.2Y0.1O4 spinel protective coating on commercial ferritic stainless steels for intermediate-temperature solid oxide fuel cell interconnect applications
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Thaheem, Imdadullah -
dc.contributor.author Joh, Dong Woo -
dc.contributor.author Noh, Taimin -
dc.contributor.author Lee, Kang-Taek -
dc.date.accessioned 2019-03-06T12:50:57Z -
dc.date.available 2019-03-06T12:50:57Z -
dc.date.created 2019-03-06 -
dc.date.issued 2019-02 -
dc.identifier.citation International Journal of Hydrogen Energy, v.44, no.8, pp.4293 - 4303 -
dc.identifier.issn 0360-3199 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9578 -
dc.description.abstract Chromia scale growth and Cr evaporation of ferritic stainless steel interconnects are known to be major causes of serious degradation of the solid oxide fuel cell (SOFC) stack. The development of suitable ceramic coating materials on the metallic interconnects has been demonstrated as an effective way to address these challenges. Herein, we developed a Mn1.35Co1.35Cu0.2Y0.1O4 (MCCY) spinel material via a facile glycine-nitrate process as a protective coating on a metallic interconnect (SUS 441). Crystal structure and surface charge state analysis of the MCCY material revealed that co-doping of Y and Cu into the (Mn,Co)3O4 spinel resulted in redistribution of the Mn ions (Mn3+ and Mn4+) into the octahedral site, which increased the electrical conduction by enhanced small polaron hopping. Accordingly, the MCCuY-coated interconnect exhibited ∼8 times lower area specific resistance (ASR) than that of the undoped Mn1.5Co1.5O4 (MCO) coated interconnect. Moreover, time-dependent ASR behavior of MCCuY-coated sample was monitored in-situ using electrochemical impedance spectroscopy at 650 °C, showing excellent stability with no observable change for >1000 h, while the ASR of the MCO-coated sample was raised by ∼71%. After 1000 h operation, we found strong adhesion between the MCCuY coating and the metallic interconnect as well as remarkably restricted Cr diffusion into the coating layer. Furthermore, the parabolic constant associated with the oxidation kinetics of the MCCuY-coated substrate (8.25 × 10−11 mg2 cm−4 s−1) was ∼1 order of magnitude lower than that of the MCO-coated one (7.34× 10−10 mg2 cm−4 s−1) at 650 °C after 1000 h measurement. These results demonstrate that the MCCuY is a highly promising coating material of metallic interconnects for intermediate-temperature SOFC applications. © 2019 Hydrogen Energy Publications LLC -
dc.language English -
dc.publisher Elsevier Ltd -
dc.title Highly conductive and stable Mn1.35Co1.35Cu0.2Y0.1O4 spinel protective coating on commercial ferritic stainless steels for intermediate-temperature solid oxide fuel cell interconnect applications -
dc.type Article -
dc.identifier.doi 10.1016/j.ijhydene.2018.12.173 -
dc.identifier.wosid 000458224700027 -
dc.identifier.scopusid 2-s2.0-85059868713 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation Thaheem, Imdadullah. (2019-02). Highly conductive and stable Mn1.35Co1.35Cu0.2Y0.1O4 spinel protective coating on commercial ferritic stainless steels for intermediate-temperature solid oxide fuel cell interconnect applications. doi: 10.1016/j.ijhydene.2018.12.173 -
dc.description.journalClass 1 -
dc.citation.publicationname International Journal of Hydrogen Energy -
dc.contributor.nonIdAuthor Thaheem, Imdadullah -
dc.contributor.nonIdAuthor Joh, Dong Woo -
dc.contributor.nonIdAuthor Noh, Taimin -
dc.identifier.citationVolume 44 -
dc.identifier.citationNumber 8 -
dc.identifier.citationStartPage 4293 -
dc.identifier.citationEndPage 4303 -
dc.identifier.citationTitle International Journal of Hydrogen Energy -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor Double doping -
dc.subject.keywordAuthor Interconnect -
dc.subject.keywordAuthor Long term stability -
dc.subject.keywordAuthor Oxidation resistance -
dc.subject.keywordAuthor Solid oxide fuel cell -
dc.subject.keywordAuthor Spinel coating layer -
dc.subject.keywordPlus Amino acids -
dc.subject.keywordPlus Ceramic coatings -
dc.subject.keywordPlus Cobalt alloys -
dc.subject.keywordPlus Copper alloys -
dc.subject.keywordPlus Crystal structure -
dc.subject.keywordPlus Diffusion coatings -
dc.subject.keywordPlus Doping (additives) -
dc.subject.keywordPlus Electrochemical impedance spectroscopy -
dc.subject.keywordPlus Ferrite -
dc.subject.keywordPlus Ferritic stainless steel -
dc.subject.keywordPlus Manganese alloys -
dc.subject.keywordPlus Metals -
dc.subject.keywordPlus Oxidation resistance -
dc.subject.keywordPlus Plating -
dc.subject.keywordPlus Protective coatings -
dc.subject.keywordPlus Stainless steel -
dc.subject.keywordPlus Area-specific resistances -
dc.subject.keywordPlus Double doping -
dc.subject.keywordPlus Interconnect -
dc.subject.keywordPlus Interconnect applications -
dc.subject.keywordPlus Intermediate temperature solid oxide fuel cell -
dc.subject.keywordPlus Intermediate temperatures -
dc.subject.keywordPlus Long term stability -
dc.subject.keywordPlus Spinel coating -
dc.subject.keywordPlus Solid oxide fuel cells (SOFC) -
dc.contributor.affiliatedAuthor Thaheem, Imdadullah -
dc.contributor.affiliatedAuthor Joh, Dong Woo -
dc.contributor.affiliatedAuthor Noh, Taimin -
dc.contributor.affiliatedAuthor Lee, Kang-Taek -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads