Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Kim, Cheol Gi -
dc.contributor.author Jung, Eun Joo -
dc.date.accessioned 2016-12-06T06:18:28Z -
dc.date.available 2016-12-06T06:18:28Z -
dc.date.issued 2016 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002231283 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/982 -
dc.description.abstract One of the important items for the determination of the macroscopic behavior of the thin magnetic film is the arrangement of magnetic domains as a function of an applied external field. These domain structures of the magnetic thin films are observed by the Magnetic transmission x-ray microscopy. The magnetic transmission x-ray microscopy is a novel technique to image element specifically magnetic domain structures. As the element-specific magnetic contrast which is due to x-ray magnetic circular dichroism scales with the projection of the magnetization onto the photon propagation direction both out-of-plane and in-plane magnetic domain structures can be studied. While observing the domain structures, enhance magnetic contrast and eliminates non-magnetic background so that, each image was normalized to a reference image taken at saturation state. Using magnetic transmission x-ray microscopy, we characterized the domain structure of the magnetic patterns including half disk and full disk and observed the vortex state of the magnetic pattern in demagnetized state. The change in vortex state for the magnetic patterns by changing the applied filed is also measured by x-ray microscopy. Furthermore, the demagnetized states for the full disk micro-magnet were determined by OOMMF simulation which is good agreement with the magnetic domain structure measured by X-ray microscopy.
In addition, the non-linear dynamics of superparamagnetic beads moving around the periphery of patterned magnetic disks in the presence of an in-plane rotating magnetic field was studied here. Two different dynamical regimes are observed in experiments, including (1) phase-locked motion at maximum driving frequencies, (2) phase-slipping motion above a first critical frequency fc1.
The force calculations, Phase-locked and Phase-slipping angles are calculated by the superparamagnetic bead around a disk micro-magnet under an applied in-plane rotating field in clockwise direction. Due to the magnetic field gradient produced by the micro-magnets, the beads can be trapped at the location of high induced field. Under the rotating field, there could be a phase lag of bead from the field direction, and the schematics for governing forces on a moving bead are discussed. ⓒ 2016 DGIST
en_US
dc.description.tableofcontents Ⅰ. Introduction 1 --
Ⅱ. Theoretical background 4 --
2.1. Magnetic anisotropy 4 --
2.1.1. Magnetocrystalline Anisotropy 4 --
2.1.2. Stress Anisotropy 8 --
2.1.3. Shape Anisotropy 9 --
2.1.4. Induced magnetic anisotropy 12 --
2.2. Magnetic domain 13 --
2.3. Micromagnetic simulation (OOMMF) 20 --
2.4. Magnetic force simulation (Ansys, Maxwell) 23 --
Ⅲ. Experiment 25 --
3.1. Fabrication of pattern 25 --
3.1.1. Photolithography 25 --
3.1.1.1. Photolithography process 25 --
3.1.1.2. Photoresist 26 --
3.1.1.3. Mask aligner 26 --
3.1.2. Electron beam lithography 28 --
3.1.2.1. Electron beam lithography process 28 --
3.1.3. Sputtering 30 --
3.1.3.1. Diode sputtering 30 --
3.1.3.2. Magnetron sputtering 31 --
3.2. Domain Measurement 32 --
3.2.1. X-ray microscopy 32 --
3.3. Magnetic actuation 34 --
3.4. Magnetic beads characterization and conjugation of Atto-520 biotin 36 --
Ⅳ. Result & Discussion 38 --
4.1. Magnetic Domain 38 --
4.2. Force calculation and phase lag of magnetic beads 41 --
4.3. Method of magnetic field calculation and beads actuation 45 --
Ⅴ. Conclusion 49 --
References 51 --
Summary 55
-
dc.format.extent 55 -
dc.language.iso en en_US
dc.publisher DGIST en_US
dc.subject Magnetic domain en_US
dc.subject X-ray microscopy en_US
dc.subject Phase-locked angle en_US
dc.subject Phase-slipping angle en_US
dc.subject Phase-locked -
dc.subject Phase-slipping -
dc.subject Maxwell 시뮬레이션 -
dc.subject 자구 -
dc.subject X-ray 마이크로스코프 -
dc.subject OOMMF -
dc.title Domain structure and force analysis of micro-magnetic patterns for bio-functionalized bead actuation en_US
dc.title.alternative 세포 운반 비드의 힘 분석과 마이크로 패턴의 자구 모양 관측 -
dc.type Thesis en_US
dc.identifier.doi 10.22677/thesis.2231283 -
dc.description.alternativeAbstract 본 논문은 최근 수성 유체 속에서 콜로이드 비드의 이동을 제어하는 무수한 바이오 응용에서 특히, 외부의 필드와 자성 패턴에서 비드 움직임을 제어하는 것을 다룬다. 바이오 세포를 운반하는 자성 비드의 움직이는 힘을 Maxwell 소프트웨어로 계산하였고 자기장과 주파수를 높였을 때 달라지는 비드의 움직임을 세 가지 구역으로 나누고 정의하였다. 첫 번째, 낮은 주파수를 주었을 때 비드가 패턴을 따라 잘 움직이는 구역을 이 phase-locked 이라고 정의하였고 두 번째, 임계 주파수보다 높은 주파수를 주었을 때 비드가 패턴에서 점프하는 구역을 phase-slipping 이라고 정의하였고 세 번째, 임계 주파수보다 훨씬 높은 주파수를 주었을 때 비드가 움직이지 않는 구역을 phase-insulated 라고 정의하였다. 본 논문은 이 중 비드의 임계 주파수를 파악하고 phase-locked 최대 각도와 phase-slipping 구역의 점핑 각도를 실험하였다. 또한, 비드가 움직이는 자기 패턴의 자기적 특성 분석을 위해 X-ray 마이크로스코프로 자구 모양을 관측하였고 OOMMF 시뮬레이션과 굉장히 유사함을 확인하였다. ⓒ 2016 DGIST -
dc.contributor.department Emerging materials Science -
dc.contributor.coadvisor Jang, Jae Eun -
dc.date.awarded 2016.2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.contributor.alternativeDepartment 대학원 신물질과학전공 -
dc.contributor.affiliatedAuthor Jung, Eun Joo -
dc.contributor.affiliatedAuthor Kim, Cheol Gi -
dc.contributor.affiliatedAuthor Jang, Jae Eun -
dc.contributor.alternativeName 정은주 -
dc.contributor.alternativeName 김철기 -
dc.contributor.alternativeName 장재은 -
Files in This Item:
000002231283.pdf

000002231283.pdf

기타 데이터 / 5.89 MB / Adobe PDF download
Appears in Collections:
Department of Physics and Chemistry Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE