Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Purnama, Indra ko
dc.contributor.author Moon, Jung-Hwan ko
dc.contributor.author You, Chun-Yeol ko
dc.date.accessioned 2019-10-16T12:57:03Z -
dc.date.available 2019-10-16T12:57:03Z -
dc.date.created 2019-09-22 -
dc.date.issued 2019-09 -
dc.identifier.citation Scientific Reports, v.9, no.1, pp.13226 -
dc.identifier.issn 2045-2322 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/10796 -
dc.description.abstract Though varying in nature, all waves share traits in a way that they all follow the superposition principle while also experiencing attenuation as they propagate in space. And thus it is more than common that a comprehensive investigation of one type of wave leads to a discovery that can be extended to all kinds of waves in other fields of research. In the field of magnetism, the wave of interest corresponds to the spin wave (SW). Specifically, there has been a push to use SWs as the next information carriers similar to how electromagnetic waves are used in photonics. At present, the biggest impediment in making SW-based device to be widely adapted is the fact that the SW experiences large attenuation due to the large damping constant. Here, we developed a method to find the SW eigenmodes and show that their respective eigen damping constants can be 40% smaller than the typical material damping constant. From a bigger perspective, this finding means that the attenuation of SW and also other types of waves in general is no more constrained by the material parameters, and it can be controlled by the shape of the waves instead. © 2019, The Author(s). -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Eigen damping constant of spin waves in ferromagnetic nanostructure -
dc.type Article -
dc.identifier.doi 10.1038/s41598-019-49872-w -
dc.identifier.wosid 000485680900023 -
dc.identifier.scopusid 2-s2.0-85072159741 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Moon, Jung-Hwan -
dc.identifier.citationVolume 9 -
dc.identifier.citationNumber 1 -
dc.identifier.citationStartPage 13226 -
dc.identifier.citationTitle Scientific Reports -
dc.type.journalArticle Article -
dc.description.isOpenAccess Y -
dc.subject.keywordPlus CLOAKING -
dc.subject.keywordPlus FILMS -
dc.contributor.affiliatedAuthor You, Chun-Yeol -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE