Detail View

Title
Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge
DGIST Authors
Park, Sang Hyun
Issued Date
2019-11
Citation
Kuijf, Hugo J. (2019-11). Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge. doi: 10.1109/TMI.2019.2905770
Type
Article
Article Type
Article
Author Keywords
Image segmentationThree-dimensional displaysManualsWhite matterBiomedical imagingRadiologyMagnetic resonance imaging (MRI)brainevaluation and performancesegmentation
Keywords
SMALL VESSEL DISEASEVALIDATION
ISSN
0278-0062
Abstract
Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin is of key importance in many neurological research studies. Currently, measurements are often still obtained from manual segmentations on brain MR images, which is a laborious procedure. The automatic WMH segmentation methods exist, but a standardized comparison of the performance of such methods is lacking. We organized a scientific challenge, in which developers could evaluate their methods on a standardized multi-center/-scanner image dataset, giving an objective comparison: the WMH Segmentation Challenge. Sixty T1 + FLAIR images from three MR scanners were released with the manual WMH segmentations for training. A test set of 110 images from five MR scanners was used for evaluation. The segmentation methods had to be containerized and submitted to the challenge organizers. Five evaluation metrics were used to rank the methods: 1) Dice similarity coefficient; 2) modified Hausdorff distance (95th percentile); 3) absolute log-transformed volume difference; 4) sensitivity for detecting individual lesions; and 5) F1-score for individual lesions. In addition, the methods were ranked on their inter-scanner robustness; 20 participants submitted their methods for evaluation. This paper provides a detailed analysis of the results. In brief, there is a cluster of four methods that rank significantly better than the other methods, with one clear winner. The inter-scanner robustness ranking shows that not all the methods generalize to unseen scanners. The challenge remains open for future submissions and provides a public platform for method evaluation. © 2019 IEEE.
URI
http://hdl.handle.net/20.500.11750/10952
DOI
10.1109/TMI.2019.2905770
Publisher
Institute of Electrical and Electronics Engineers
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

박상현
Park, Sang Hyun박상현

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads