Detail View

DC Field Value Language
dc.contributor.author Kim, Minsub -
dc.contributor.author Kung, Jaeha -
dc.contributor.author Lee, Sungjin -
dc.date.accessioned 2019-12-16T01:11:42Z -
dc.date.available 2019-12-16T01:11:42Z -
dc.date.created 2019-10-28 -
dc.date.issued 2020-01 -
dc.identifier.issn 1556-6056 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/10992 -
dc.description.abstract In this paper, we propose a novel storage architecture, called an Inference-Enabled SSD (IESSD), which employs FPGA-based DNN inference accelerators inside an SSD. IESSD is capable of performing DNN operations inside an SSD, avoiding frequent data movements between application servers and data storage. This boosts up analytics performance of DNN applications. Moreover, by placing accelerators near data within an SSD, IESSD delivers scalable analytics performance which improves with the amount of data to analyze. To evaluate its effectiveness, we implement an FPGA-based proof-of-concept prototype of IESSD and carry out a case study with an image tagging (classification) application. Our preliminary results show that IESSD exhibits 1.81x better performance, achieving 5.31x lower power consumption, over a conventional system with GPU accelerators. -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers -
dc.title Towards Scalable Analytics with Inference-Enabled Solid-State Drives -
dc.type Article -
dc.identifier.doi 10.1109/LCA.2019.2930590 -
dc.identifier.wosid 000525233900001 -
dc.identifier.scopusid 2-s2.0-85083239671 -
dc.identifier.bibliographicCitation Kim, Minsub. (2020-01). Towards Scalable Analytics with Inference-Enabled Solid-State Drives. IEEE Computer Architecture Letters, 19(1), 13–17. doi: 10.1109/LCA.2019.2930590 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Image annotation -
dc.subject.keywordAuthor Acceleration -
dc.subject.keywordAuthor Hardware -
dc.subject.keywordAuthor Servers -
dc.subject.keywordAuthor Field programmable gate arrays -
dc.subject.keywordAuthor Task analysis -
dc.subject.keywordAuthor Computer architecture -
dc.subject.keywordAuthor Solid-state drives -
dc.subject.keywordAuthor in-storage processing -
dc.subject.keywordAuthor deep neural networks -
dc.subject.keywordAuthor convolutional neural networks -
dc.citation.endPage 17 -
dc.citation.number 1 -
dc.citation.startPage 13 -
dc.citation.title IEEE Computer Architecture Letters -
dc.citation.volume 19 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Computer Science -
dc.relation.journalWebOfScienceCategory Computer Science, Hardware & Architecture -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

궁재하
Kung, Jaeha궁재하

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads