Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Choi, Jongmin -
dc.contributor.author Choi, Min-Jae -
dc.contributor.author Kim, Junghwan -
dc.contributor.author Dinic, Filip -
dc.contributor.author Todorovic, Petar -
dc.contributor.author Sun, Bin -
dc.contributor.author Wei, Mingyang -
dc.contributor.author Baek, Se-Woong -
dc.contributor.author Hoogland, Sjoerd -
dc.contributor.author de Arquer, F. Pelayo Garcia -
dc.contributor.author Voznyy, Oleksandr -
dc.contributor.author Sargent, Edward H. -
dc.date.accessioned 2020-02-27T09:12:12Z -
dc.date.available 2020-02-27T09:12:12Z -
dc.date.created 2020-01-29 -
dc.date.issued 2020-02 -
dc.identifier.issn 0935-9648 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/11422 -
dc.description.abstract Colloidal quantum dots (CQDs) are promising materials for photovoltaic (PV) applications owing to their size-tunable bandgap and solution processing. However, reports on CQD PV stability have been limited so far to storage in the dark; or operation illuminated, but under an inert atmosphere. CQD PV devices that are stable under continuous operation in air have yet to be demonstrated-a limitation that is shown here to arise due to rapid oxidation of both CQDs and surface passivation. Here, a stable CQD PV device under continuous operation in air is demonstrated by introducing additional potassium iodide (KI) on the CQD surface that acts as a shielding layer and thus stands in the way of oxidation of the CQD surface. The devices (unencapsulated) retain >80% of their initial efficiency following 300 h of continuous operation in air, whereas CQD PV devices without KI lose the amount of performance within just 21 h. KI shielding also provides improved surface passivation and, as a result, a higher power conversion efficiency (PCE) of 12.6% compared with 11.4% for control devices. -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient -
dc.type Article -
dc.identifier.doi 10.1002/adma.201906497 -
dc.identifier.wosid 000506705500001 -
dc.identifier.scopusid 2-s2.0-85077910200 -
dc.identifier.bibliographicCitation Advanced Materials, v.32, no.7, pp.1906497 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor device stability -
dc.subject.keywordAuthor oxidation -
dc.subject.keywordAuthor solar cells -
dc.subject.keywordAuthor colloidal quantum dots -
dc.subject.keywordAuthor continuous operation -
dc.subject.keywordPlus DIFFUSION -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus PBS -
dc.citation.number 7 -
dc.citation.startPage 1906497 -
dc.citation.title Advanced Materials -
dc.citation.volume 32 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Chemical & Energy Materials Engineering (CEME) Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE