Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Juran -
dc.contributor.author Kim, Jayeong -
dc.contributor.author Ko, Eunji -
dc.contributor.author Yoon, Seokhyun -
dc.contributor.author Sim, Jun-Hyoung -
dc.contributor.author Yang, Kee-Jeong -
dc.contributor.author Kim, Dae-Hwan -
dc.contributor.author Kang, Jin-Kyu -
dc.contributor.author Song, Yu Jin -
dc.contributor.author Jeon, Chan-Wook -
dc.contributor.author Jo, William -
dc.date.accessioned 2020-03-04T02:43:11Z -
dc.date.available 2020-03-04T02:43:11Z -
dc.date.created 2020-03-03 -
dc.date.issued 2020-05 -
dc.identifier.issn 1062-7995 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/11501 -
dc.description.abstract We report highly efficient Cu2ZnSn(S,Se)4 (CZTSSe) thin films with a power conversion efficiency (PCE) of 12.3% at their surface and interface. The structural and electrical properties were locally investigated, using scanning probe microscopy and micro-Raman scattering, to improve the performance of kesterite solar cells. Interestingly, this research reports quite different results from the conventional kesterite solar cells, owing to the observance of undesirable voids and secondary phases. Nonetheless, the solar cells exhibit a high PCE of over 12%. Thus, we probe the kesterite solar cells as a function of the depth and introduce a mechanical dimple-etching process. The relatively low melting temperature of the pure-metal precursors results in the unique properties within the solar cell materials. Understanding these phenomena and their effects on carrier behavior enables the achievement of a higher PCE and better performance for kesterite solar cells. © 2020 John Wiley & Sons, Ltd. -
dc.language English -
dc.publisher John Wiley & Sons Inc. -
dc.title Carrier transport and surface potential over phase variations in the surface and bulk of highly efficient Cu2ZnSn(S,Se)(4) solar cells -
dc.type Article -
dc.identifier.doi 10.1002/pip.3248 -
dc.identifier.wosid 000509103800001 -
dc.identifier.scopusid 2-s2.0-85078750499 -
dc.identifier.bibliographicCitation Progress in Photovoltaics, v.28, no.5, pp.382 - 392 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor nano-Auger electron spectroscopy -
dc.subject.keywordAuthor carrier transport -
dc.subject.keywordAuthor Cu2ZnSn(S -
dc.subject.keywordAuthor Se)(4) solar cells -
dc.subject.keywordAuthor Kelvin probe force microscopy -
dc.subject.keywordAuthor micro-Raman spectroscopy -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus GRAIN-BOUNDARIES -
dc.subject.keywordPlus FORMATION MECHANISM -
dc.subject.keywordPlus SECONDARY PHASES -
dc.subject.keywordPlus CU2ZNSNS4 -
dc.subject.keywordPlus REMOVAL -
dc.citation.endPage 392 -
dc.citation.number 5 -
dc.citation.startPage 382 -
dc.citation.title Progress in Photovoltaics -
dc.citation.volume 28 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Energy & Fuels; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE