Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Se-Yun -
dc.contributor.author Son, Dae-Ho -
dc.contributor.author Kim, Seung-Hyun -
dc.contributor.author Kim, Young-Il -
dc.contributor.author Kim, Sammi -
dc.contributor.author Ahn, Kwangseok -
dc.contributor.author Yang, Kee-Jeong -
dc.contributor.author Kang, Jin-Kyu -
dc.contributor.author Kim, Dae-Hwan -
dc.date.accessioned 2020-03-15T10:38:31Z -
dc.date.available 2020-03-15T10:38:31Z -
dc.date.created 2020-03-03 -
dc.date.issued 2020-04 -
dc.identifier.issn 1614-6832 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/11544 -
dc.description.abstract Herein, a liquid-assisted grain growth (LGG) mechanism for a vacuum-processed Cu2ZnSn(S1− xSex)4 (CZTSSe) absorber that is enabled by the presence of a liquid phase containing predominantly Cu, Sn, and Se (L-CTSe) is suggested to explain the large grain size of up to ≈6 µm obtained at low temperatures, such as 480 °C. In this system, LGG plays a key role in achieving a large grain CZTSSe absorber, but the residual L-CTSe, a key factor in LGG, deteriorates the device performance. L-CTSe residue can possibly remain when using metal precursors for reasons such as local composition nonuniformity due to the agglomeration of Cu–Sn alloys, uncontrolled Zn volatilization. It is expected that CZTSSe cells with L-CTSe residues have lower efficiency and fill factor than CZTSSe cells without L-CTSe due to the role of L-CTSe as a shunt path and compositional misfit. These tendencies are observed in the statistical results. Thus, when synthesizing CZTSSe using a metal precursor in a two-step process, it is considered important to design the precursors to remove unwanted L-CTSe residues and optimization of composition. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title Effect of Cu-Sn-Se Liquid Phase on Grain Growth and Efficiency of CZTSSe Solar Cells -
dc.type Article -
dc.identifier.doi 10.1002/aenm.201903173 -
dc.identifier.wosid 000511235100001 -
dc.identifier.scopusid 2-s2.0-85079054783 -
dc.identifier.bibliographicCitation Advanced Energy Materials, v.10, no.14, pp.1903173 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor abnormal grain growth -
dc.subject.keywordAuthor CZTSSe -
dc.subject.keywordAuthor liquid-assisted grain growth -
dc.subject.keywordAuthor metal precursors -
dc.subject.keywordAuthor second phase -
dc.subject.keywordPlus PHOTOVOLTAIC PROPERTIES -
dc.subject.keywordPlus SELENIZATION -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus CUINSE2 -
dc.identifier.url https://onlinelibrary.wiley.com/cms/asset/2a9783c8-d42f-49ab-bbdd-d3fcf7b73617/aenm202070060-gra-0001-m.jpg -
dc.citation.number 14 -
dc.citation.startPage 1903173 -
dc.citation.title Advanced Energy Materials -
dc.citation.volume 10 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy Technology 1. Journal Articles
Division of Electronics & Information System 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE