Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 최홍수 -
dc.contributor.author Awais Ahmed -
dc.date.accessioned 2020-06-22T16:00:32Z -
dc.date.available 2020-06-22T16:00:32Z -
dc.date.issued 2020 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000282152 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/11957 -
dc.description Magnetic hyperthermia, Magnetic nanoparticles, Feedback control -
dc.description.abstract Hyperthermia therapy is a type of medical treatment in which body tissue is exposed to higher temperatures in an effort to treat cancer. Magnetic nano-particles are excellent for hyperthermia treatment. When a high frequency alternating magnetic field is applied, magnetic nanoparticles can increase the temperature which can then be used to kill cancer cells with minimum damage to the surrounding tissues.
This Theses characterizes the physical properties such as size and magnetization, cell viability and heat generation capabilities against increasing magnetic field intensity. A feedback controller is also developed and its performance has been evaluated to monitor and control the temperature non-invasively using an Infrared camera. The developed feedback controller is then used for both in-vitro and in-vivo conditions in order to destroy the tumor. In-vitro studies are conducted with cancerous cell lines, HeLa and PC3, where cultured cells are heated with magnetic nanoparticles and cell death are characterized for different conditions. For in-vivo, PC3 xenograft tumor mice model was prepared and was treated by injecting magnetic nanoparticles directly into the tumor. These tumors were heated under alternating magnetic, increasing their temperature and resulting in cell death. A swarm of magnetic nanoparticles was manipulated inside the blood vessel of rat’s brain to show the possibility of targeted delivery of nanoparticles which can then be heated to kill cancer cells selectively.
Keywords: Magnetic hyperthermia, Magnetic nanoparticles, Feedback control
-
dc.description.statementofresponsibility prohibition -
dc.description.tableofcontents 1. Introduction 1
1.1. Cancer – Start, Growth, and Spreading 2
1.2. Conventional treatment methods and limitations 3
1.3. Hyperthermia – Heat energy to kill cancer 4
1.3.1. Principle of Hyperthermia 5
1.3.2. Classification of Hyperthermia 7
1.3.3. Nanotechnology for local hyperthermia 8
2. Magnetic hyperthermia therapy 11
2.1. Why hyperthermia with magnetic nanoparticles? 11
2.2. Heat generation mechanism and the effect of frequency and strength of the alternating magnetic field 12
2.3. Why superparamagnetic iron-oxide nanoparticles 14
2.4. Manipulation of magnetic nanoparticles 14
3. Characterization of magnetic nanoparticles physical parameters, heating and biocompatibility 18
3.1. Characterization of size 18
3.2. Characterization of magnetization of magnetic nanoparticles 20
3.3. Characterization of heat generation under alternating magnetic field 22
3.4. Characterization of biocompatibility of magnetic nanoparticles 24
3.4.1. Experiment preparation and conditions 24
3.4.2. Results and discussion 25
4. Closed-loop temperature controller 29
4.1. Design of the controller 29
4.1.1. Measurement 30
4.1.2. Proportional-Integral (PI) control 31
4.1.3. Actuator 33
4.1.4. Graphical User Interface (GUI) and Data logging 35
4.2. Performance Evaluation of the Controller 36
5. Hyperthermia treatments in-vitro and in-vivo 39
5.1. In-vitro hyperthermia treatment 39
5.1.1. Experiment preparation and conditions 39
5.1.2. Results and discussion 40
5.2. In-vivo hyperthermia treatment 44
5.2.1. Preparation of tumor model 44
5.2.2. Experimental conditions 46
5.2.3. Tumor volume measurement 46
5.2.4. Results and Discussion 48
6. Manipulation of magnetic nanoparticles swarm in blood vessel of rat’s brain 57
7. Conclusion 59
8. References 62
-
dc.format.extent 70 -
dc.language eng -
dc.publisher DGIST -
dc.title Minimally invasive, closed loop temperature controlled magnetic hyperthermia therapy using swarm of superparamagnetic iron-oxide nanoparticles -
dc.title.alternative Superparamagnetic iron-oxide nanoparticles의 swarm을 통해 비침습적, Closed-loop 온도 컨트롤이 가능한 자성 고열 치료 -
dc.type Thesis -
dc.identifier.doi 10.22677/Theses.200000282152 -
dc.description.alternativeAbstract 고열 치료 요법은 암을 치료하기 위해 신체 조직을 더 높은 온도에 노출시키는 치료 방법입니다.
자성 나노 입자는 고열 치료에 적합합니다. 높은 교류 자기장이 가해지게 되면, 자성 나노 입자는 온도를 증가시켜 주변 조직에 최소한의 피해를 가하면서 암세포를 죽일 수 있습니다.
이 논문은 사이즈, 자화, 나노 입자의 생체 적합성, 자기장 증가에 따른 열 발생 등의 물리적 특성을 특성화 합니다. 피드백 컨트롤러 역시 개발하였고, 적외선 카메라를 이용한 비침습적인 온도의 모니터링과 컨트롤을 통해 컨트롤러의 수행 능력이 평가되었습니다.
개발된 피드백 컨트롤러는 체내, 체외 조건에서 암세포를 죽이기 위해 사용되었습니다.
체내 연구에서는 암세포 라인인, HeLa, PC3 가 이용되었으며, 배양된 세포가 다른 조건 아래서 자성 나노 입자에 의해 온도가 상승했을 때 세포의 사멸이 특성화 되었습니다.
체내 실험에서는 PC3를 이종이식한 쥐 모델이 이용되었으며 자성 나노 입자가 종양에 투여되었습니다.
이 종양은 교류 자기장에 의해 온도가 올라가고 세포 사멸이 발생하게 됩니다.


핵심어: 자성 고열 치료, 자성 나노 입자, 피드백 컨트롤
-
dc.description.degree Master -
dc.contributor.department Robotics Engineering -
dc.contributor.coadvisor Jin-young Kim -
dc.date.awarded 2020-02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.RM 아66 202002 -
dc.date.accepted 2020-01-20 -
dc.contributor.alternativeDepartment 로봇공학전공 -
dc.embargo.liftdate 2024-12-24 -
dc.contributor.affiliatedAuthor Choi, Hongsoo -
dc.contributor.affiliatedAuthor Ahmed, Awais -
dc.contributor.affiliatedAuthor Kim, Jin-young -
dc.contributor.alternativeName 김진영 -
dc.contributor.alternativeName Hongsoo Choi -
dc.contributor.alternativeName 아웨이스 아메드 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE