Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 홍재성 -
dc.contributor.author Hyunseok Choi -
dc.date.accessioned 2020-06-22T16:01:47Z -
dc.date.available 2020-06-22T16:01:47Z -
dc.date.issued 2020 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000285575 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/11982 -
dc.description Augmented reality, Surgical navigation, Camera calibration, Visualization, Optical tracking -
dc.description.statementofresponsibility prohibition -
dc.description.tableofcontents Ⅰ. INTRODUCTION 1
1-1. Introduction of AR based surgical navigation 1
1-2. Visualization techniques for the depth perception in AR navigation 2
1-3. Visualization techniques to compensate for lens distortion 3
1-4. The application of visualization technique : Bone tumor resection 4
1-5. The application of visualization technique : Bone tumor resection 5
Ⅱ. Methods 6
2-1 Camera calibration 6
2-1.1 Control points estimation method 8
2-1.2 Camera model 12
2-1.3 Mono camera calibration 16
2-1.4 Stereo camera calibration 17
2-2. Marker design 19
2-3. Mono camera-based tracking method 22
2-4. Stereo camera-based tracking method 23
2-5. Patient to image registration 25
2-6. Fundamental techniques for AR visualization 28
2-7. Advanced visualization techniques for AR navigation 31
2-7.1 Effective overlay technique considering lens distortion 31
2-7.2 Depth perception in AR 37
2-7.3 Visualization of safety margin 40
Ⅲ. Experiments 45
3-1. Control points estimation method 45
3-2. Camera calibration 50
3-2.1 Mono camera calibration 50
3-2.2 Stereo camera calibration 51
3-3. Mono camera-based tracking method 52
3-4. Stereo camera-based tracking method 53
3-5. Effective overlay technique considering lens distortion 55
3-6. Depth perception in AR 56
3-6.1 Subjects and evaluation items 56
3-6.2 Apparatus 56
3-6.3 Task definitions 57
3-6.4 HypoTheses and statistical analysis 59
3-7. Visualization of safety margin 60
Ⅳ. Results and discussion 62
4-1. Control points estimation method 62
4-1.1 Error of control points according to camera angle 62
4-1.2 Error of control points according to degree of blur 63
4-2. Camera calibration 65
4-2.1 Mono camera calibration 65
4-2.2 Stereo camera calibration 66
4-3. Mono camera-based tracking method 68
4-4. Stereo camera-based tracking method 69
4-5. Effective overlay technique considering lens distortion 69
4-6. Depth perception in AR 72
4-7. Visualization of safety margin 79
Ⅴ. Conclusion 82
-
dc.format.extent 95 -
dc.language eng -
dc.publisher DGIST -
dc.title High Accuracy Visualization Methods for Augmented Reality based Surgical Navigation -
dc.title.alternative 증강현실 기반 수술 내비게이션을 위한 고 정밀 시각화 기법들 -
dc.type Thesis -
dc.identifier.doi 10.22677/Theses.200000285575 -
dc.description.degree Doctor -
dc.contributor.department Robotics Engineering -
dc.contributor.coadvisor Hyunki Lee -
dc.date.awarded 2020-02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.RD 최94 202002 -
dc.date.accepted 2020-01-20 -
dc.contributor.alternativeDepartment 로봇공학전공 -
dc.embargo.liftdate 2024-12-31 -
dc.contributor.affiliatedAuthor Hong, Jaesung -
dc.contributor.affiliatedAuthor Choi, Hyunseok -
dc.contributor.affiliatedAuthor Lee, Hyunki -
dc.contributor.alternativeName 최현석 -
dc.contributor.alternativeName 이현기 -
dc.contributor.alternativeName Jaesung Hong -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE