Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Chae, Munseok S. ko
dc.contributor.author Kim, Hyojeong J. ko
dc.contributor.author Bu, Hyeri ko
dc.contributor.author Lyoo, Jeyne ko
dc.contributor.author Attias, Ran ko
dc.contributor.author Dlugatch, Ben ko
dc.contributor.author Oliel, Matan ko
dc.contributor.author Gofer, Yosef ko
dc.contributor.author Hong, Seung-Tae ko
dc.contributor.author Aurbach, Doron ko
dc.date.accessioned 2020-07-06T07:10:53Z -
dc.date.available 2020-07-06T07:10:53Z -
dc.date.created 2020-05-04 -
dc.date.issued 2020-06 -
dc.identifier.citation Advanced Energy Materials, v.10, no.21, pp.2000564 -
dc.identifier.issn 1614-6832 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12037 -
dc.description.abstract Tunnel-type sodium manganese oxide is a promising cathode material for aqueous/nonaqueous sodium-ion batteries, however its storage mechanism is not fully understood, in part due to the complicated sodium intercalation process. In addition, low cyclability due to manganese dissolution has limited its practical application in rechargeable batteries. Here, the intricate sodium intercalation mechanism of Na0.44MnO2 is revealed by combination of electrochemical characterization, structure determination from powder X-ray diffraction data, 3D bond valence difference maps, and barrier-energy calculations of the sodium diffusion. NaI is proposed as an important electrolyte solution additive. It is shown to form a thin, beneficial, and durable cathode surface film that prevents manganese dissolution. The addition of 0.01 m NaI to electrolyte solutions based on alkyl carbonate solvents and NaClO4 greatly improves the cycling efficiency, raising the capacity retention from 86% to 96% after 600 cycles. This study determines the core aspects of the sodium intercalation mechanism in tunnel-type sodium manganese oxide and shows how it can serve as a durable cathode material for rechargeable Na batteries. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title The Sodium Storage Mechanism in Tunnel-Type Na0.44MnO2 Cathodes and the Way to Ensure Their Durable Operation -
dc.type Article -
dc.identifier.doi 10.1002/aenm.202000564 -
dc.identifier.wosid 000539283600002 -
dc.identifier.scopusid 2-s2.0-85083526538 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Chae, Munseok S. -
dc.contributor.nonIdAuthor Attias, Ran -
dc.contributor.nonIdAuthor Dlugatch, Ben -
dc.contributor.nonIdAuthor Oliel, Matan -
dc.contributor.nonIdAuthor Gofer, Yosef -
dc.contributor.nonIdAuthor Aurbach, Doron -
dc.identifier.citationVolume 10 -
dc.identifier.citationNumber 21 -
dc.identifier.citationStartPage 2000564 -
dc.identifier.citationTitle Advanced Energy Materials -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor cathode surface films -
dc.subject.keywordAuthor electrolyte solutions additives -
dc.subject.keywordAuthor sodium intercalation -
dc.subject.keywordAuthor sodium-ion batteries -
dc.subject.keywordAuthor tunnel-type sodium manganese oxide -
dc.subject.keywordPlus ION BATTERY -
dc.subject.keywordPlus LITHIUM BATTERIES -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus INTERCALATION -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus NAXMNO2 -
dc.subject.keywordPlus ANODE -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus LI -
dc.contributor.affiliatedAuthor Hong, Seung-Tae -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials Discovery Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE