WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Youngjae | - |
| dc.contributor.author | Kim, Hyunmin | - |
| dc.contributor.author | Jang, Houk | - |
| dc.contributor.author | Ahn, Jong-Hyun | - |
| dc.contributor.author | Lee, JaeDong | - |
| dc.date.accessioned | 2020-08-19T11:00:49Z | - |
| dc.date.available | 2020-08-19T11:00:49Z | - |
| dc.date.created | 2020-06-30 | - |
| dc.date.issued | 2020-06 | - |
| dc.identifier.issn | 1530-6984 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/12249 | - |
| dc.description.abstract | We propose dual resonant optical sum frequency generation (SFG), where the two most singular resonances could be selected, and report for the monolayer (1L-) WSe2 when one (ω1) of two excitation pulses is resonant to A exciton and their sum frequency (ω1 + ω2) to D exciton. The dual resonant SFG confirms that, under an irradiation of ω1 and ω2 pulses with the same fluence of ∼1.4 × 1010 W/m2, its signal intensity could be enhanced about 20 times higher than the resonant SHG (i.e., 2ω1 to the D excitonic absorption). Further, the dual resonant SFG intensity of 1L-WSe2 is found to be 1 order of magnitude higher than the single resonant SFG intensity of 1L-WS2 under the same condition of two-pulse irradiation. Finally, observations of the dual resonant SFG are thoroughly examined using real-time time-dependent density functional theory (rt-TDDFT), and the relevant nonlinear optical characteristics are scrutinized using the Greenwood-Kubo formalism. Copyright © 2020 American Chemical Society. | - |
| dc.language | English | - |
| dc.publisher | American Chemical Society | - |
| dc.title | Dual Resonant Sum Frequency Generations from Two-Dimensional Materials | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1021/acs.nanolett.0c01363 | - |
| dc.identifier.wosid | 000541691200060 | - |
| dc.identifier.scopusid | 2-s2.0-85086345970 | - |
| dc.identifier.bibliographicCitation | Kim, Youngjae. (2020-06). Dual Resonant Sum Frequency Generations from Two-Dimensional Materials. Nano Letters, 20(6), 4530–4536. doi: 10.1021/acs.nanolett.0c01363 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordAuthor | SFG | - |
| dc.subject.keywordAuthor | dual resonance | - |
| dc.subject.keywordAuthor | excitonic resonance | - |
| dc.subject.keywordAuthor | TMD | - |
| dc.subject.keywordAuthor | rt-TDDFT | - |
| dc.subject.keywordPlus | STIMULATED-EMISSION | - |
| dc.subject.keywordPlus | MOS2 | - |
| dc.citation.endPage | 4536 | - |
| dc.citation.number | 6 | - |
| dc.citation.startPage | 4530 | - |
| dc.citation.title | Nano Letters | - |
| dc.citation.volume | 20 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry; Science & Technology - Other Topics; Materials Science; Physics | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter | - |
| dc.type.docType | Article | - |