Detail View

Magnetoelectric and magnetodielectric coupling in partially Ni-doped CoFe2O4 and 0.15(Ba0.7Ca0.3TiO3)-0.85(BaZr0.2Ti0.8O3) composites prepared via clean microwave sintering
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Magnetoelectric and magnetodielectric coupling in partially Ni-doped CoFe2O4 and 0.15(Ba0.7Ca0.3TiO3)-0.85(BaZr0.2Ti0.8O3) composites prepared via clean microwave sintering
DGIST Authors
Kim, Hyunmin
Issued Date
2020-12
Citation
Mane, Sagar M. (2020-12). Magnetoelectric and magnetodielectric coupling in partially Ni-doped CoFe2O4 and 0.15(Ba0.7Ca0.3TiO3)-0.85(BaZr0.2Ti0.8O3) composites prepared via clean microwave sintering. doi: 10.1016/j.jallcom.2020.156599
Type
Article
Article Type
Article
Author Keywords
Clean-microwave sinteringMagnetic ac conductivityMagnetic impedance spectroscopyMagnetoelectric and magnetodielectric couplingsMultiferroic composite
Keywords
FREE PIEZOELECTRIC CERAMICSMULTIFERROIC PROPERTIESDIELECTRIC-PROPERTIESMAGNETIC-PROPERTIESCRYSTAL-STRUCTUREBEHAVIORMICROSTRUCTURE
ISSN
0925-8388
Abstract
Multiferroic composites with high magnetoelectric coupling at room temperature are considered as the most significant materials due to their potential application in many electronic devices. Furthermore, ultrafast, eco-friendly energy-efficient innovative techniques to develop multifunctional materials have attracted abundant importance. In this study, we report on ferrite–ferroelectric particulate composites prepared via clean, eco-friendly, ultrafast, hybrid-microwave sintering. Partially Ni-doped CoFe2O4 was selected as a magnetostrictive phase due to its considerable value of the magnetostriction coefficient, λ11 ≈ −118 ppm, saturation magnetization Ms ≈ 80 emu/gm, and μB ≈ 3.37 and mixed with a 0.15(Ba0·7Ca0·3TiO3)–0.85(BaZr0·2Ti0·8O3) ferroelectric phase in different content ratios of 10%, 20%, 30%, and 40%. The multiferroic properties of the sintered composite samples were investigated considering magnetoelectric and magnetodielectric couplings. The highest value of the magnetoelectric coupling coefficient, αME = 22..09 mV/Oe·cm was observed for the composite with 40% ferrite content, while similar composite exhibits the higher value of the magnetodielectric coupling coefficient which is 3.52% at 1 kHz (frequency) and 1 T (magnetic field). X-ray diffraction and Raman spectroscopy confirmed the phases of the ferrite and ferroelectric constituents without revealing any additional phases. The impedance and AC conductivity of the multiferroic compositions were analyzed under various temperatures and by applying a magnetic field at room temperature. The temperature-dependent dielectric nature confirms that the addition of Ni-doped CoFe2O4 into a ferroelectric constituent substantially influences the dielectric constant in the paraelectric region. These results may offer an alternative technique for the preparation of multiferroic composites with improved coupling properties. © 2020 Elsevier B.V.
URI
http://hdl.handle.net/20.500.11750/12437
DOI
10.1016/j.jallcom.2020.156599
Publisher
Elsevier BV
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김현민
Kim, Hyunmin김현민

Division of Biomedical Technology

read more

Total Views & Downloads