Detail View

Pulse Electrodeposition of a Superhydrophilic and Binder-Free Ni-Fe-P Nanostructure as Highly Active and Durable Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Pulse Electrodeposition of a Superhydrophilic and Binder-Free Ni-Fe-P Nanostructure as Highly Active and Durable Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions
Issued Date
2020-12
Citation
Darband, Ghasem Barati. (2020-12). Pulse Electrodeposition of a Superhydrophilic and Binder-Free Ni-Fe-P Nanostructure as Highly Active and Durable Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 12(48), 53719–53730. doi: 10.1021/acsami.0c13648
Type
Article
Author Keywords
pulse electrodepositionhydrogen evolution reactionoxygen evolution reactionNi-Fe-P nanostructure
Keywords
BIFUNCTIONAL ELECTROCATALYSTEFFICIENTCATALYSTSNANOSHEETSCOCOATINGSFOAM
ISSN
1944-8244
Abstract
Development and fabrication of electrodes with favorable electrocatalytic activity, low-cost, and excellent electrocatalytic durability are one of the most important issues in the hydrogen production area using the electrochemical water splitting process. We use the pulse electrodeposition method as a versatile and cost-effective approach to synthesize three-dimensional Ni-Fe-P electrocatalysts on nickel nanostructures under various applied frequencies and duration times, in which nanostructures exhibit excellent intrinsic electrocatalytic activity. Benefiting from the three-dimensional structure, as well as the simultaneous presence of the three elements nickel, iron, and phosphorus, the electrode fabricated at the optimal conditions has indicated outstanding electrocatalytic activity with a η10 of 66 and 198 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in a 1.0 M KOH solution. Also, the water electrolysis cell constructed with this electrode and tested as a bifunctional electrode exhibited 1.508 V for 10 mA cm-2 in overall water splitting. In addition, the lowest amount of potential change in 100 mA cm-2 was observed for HER and OER, indicating excellent electrocatalytic stability. This study proposes a binder-free and economical technique for the synthesis of three-dimensional electrocatalysts. © 2020 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/12518
DOI
10.1021/acsami.0c13648
Publisher
American Chemical Society
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

상가라쥬샨무감
Shanmugam, Sangaraju상가라쥬샨무감

Department of Energy Science and Engineering

read more

Total Views & Downloads