Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Cho, Sinyoung ko
dc.contributor.author Kim, Jigeon ko
dc.contributor.author Jeong, Soon Moon ko
dc.contributor.author Ko, Min Jae ko
dc.contributor.author Lee, Jong-Soo ko
dc.contributor.author Kim, Younghoon ko
dc.date.accessioned 2021-01-22T07:04:20Z -
dc.date.available 2021-01-22T07:04:20Z -
dc.date.created 2020-12-14 -
dc.date.issued 2020-10 -
dc.identifier.citation Chemistry of Materials, v.32, no.20, pp.8808 - 8818 -
dc.identifier.issn 0897-4756 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12668 -
dc.description.abstract Advances in surface chemistry and manipulation of CsPbI3 perovskite quantum dots (PQDs) have enabled the replacement of native long-chain ligands with short-chain ligands, leading to their photovoltaic applications; however, there are no reports on those of wide-bandgap and green-emitting CsPbBr3 PQDs that are promising in high-voltage and colorful building-integrated photovoltaics. Binding energies required for ligand adsorption/desorption alter according to halide compositions of PQDs because of different soft/hard acid/base interactions, and therefore, the surface ligand-exchange process for CsPbBr3 PQDs should be developed. Herein, we demonstrate the utilization of CsPbBr3 PQDs in green light-emitting solar cells with a high open-circuit voltage (VOC) of 1.6 V, realized via solvent miscibility-induced ligand exchange. Carboxylate esters with different alkyl chain lengths are used; longer carboxylate esters show high miscibility with hydrophobic substances, leading to more efficient ligand exchange with preserving CsPbBr3 PQD size but at the same time undesired less film thickness because of the stripping-out of as-cast CsPbBr3 PQDs. Based on these results, we devise a suitably optimized solvent mixture of carboxylate esters to enable efficient ligand exchange with suppressed stripping-out phenomena. Therefore, the resultant CsPbBr3 PQD solids show a power conversion efficiency of 4.23% and a VOC of ∼1.6 V with green electroluminescence under applied voltage. © 2020 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title High-Voltage and Green-Emitting Perovskite Quantum Dot Solar Cells via Solvent Miscibility-Induced Solid-State Ligand Exchange -
dc.type Article -
dc.identifier.doi 10.1021/acs.chemmater.0c02102 -
dc.identifier.wosid 000586787900006 -
dc.identifier.scopusid 2-s2.0-85096538006 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Ko, Min Jae -
dc.identifier.citationVolume 32 -
dc.identifier.citationNumber 20 -
dc.identifier.citationStartPage 8808 -
dc.identifier.citationEndPage 8818 -
dc.identifier.citationTitle Chemistry of Materials -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordPlus ALPHA-CSPBI3 PEROVSKITE -
dc.subject.keywordPlus ROOM-TEMPERATURE -
dc.subject.keywordPlus HALIDE CSPBX3 -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus BR -
dc.subject.keywordPlus NANOCRYSTALS -
dc.subject.keywordPlus EMISSION -
dc.subject.keywordPlus CL -
dc.subject.keywordPlus LUMINESCENCE -
dc.subject.keywordPlus BRIGHT -
dc.contributor.affiliatedAuthor Jeong, Soon Moon -
dc.contributor.affiliatedAuthor Lee, Jong-Soo -
dc.contributor.affiliatedAuthor Kim, Younghoon -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE