Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
Department of Electrical Engineering and Computer Science
Visual Computing Lab
2. Conference Papers
Video Upright Adjustment and Stabilization
Won, Jucheol
;
Cho, Sunghyun
Department of Electrical Engineering and Computer Science
Visual Computing Lab
2. Conference Papers
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
Video Upright Adjustment and Stabilization
Issued Date
2019-09-10
Citation
Won, Jucheol. (2019-09-10). Video Upright Adjustment and Stabilization. British Machine Vision Conference, 1–12. doi: 10.5244/C.33.44
Type
Conference Paper
Abstract
We propose a novel video upright adjustment method that can reliably correct slanted video contents. Our approach combines deep learning and Bayesian inference to estimate accurate rotation angles from video frames. We train a convolutional neural network to obtain initial estimates of the rotation angles of input video frames. The initial estimates are temporally inconsistent and inaccurate. To resolve this, we use Bayesian inference. We analyze estimation errors of the network, and derive an error model. Based on the error model, we formulate video upright adjustment as a maximum a posteriori problem where we estimate consistent rotation angles from the initial estimates. Finally, we propose a joint approach to video stabilization and upright adjustment to minimize information loss. Experimental results show that our video upright adjustment method can effectively correct slanted video contents, and our joint approach can achieve visually pleasing results from shaky and slanted videos. © 2019. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.
URI
http://hdl.handle.net/20.500.11750/12919
DOI
10.5244/C.33.44
Publisher
British Machine Vision Association (BMVA)
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Total Views & Downloads