Detail View

Physical routes for the synthesis of kesterite
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Ratz, T -
dc.contributor.author Brammertz, G -
dc.contributor.author Caballero, R -
dc.contributor.author León, M -
dc.contributor.author Canulescu, S -
dc.contributor.author Schou, J -
dc.contributor.author Gütay, L -
dc.contributor.author Pareek, D -
dc.contributor.author Taskesen, T -
dc.contributor.author Kim, Dae-Hwan -
dc.contributor.author Kang, Jin-Kyu -
dc.contributor.author Malerba, C -
dc.contributor.author Redinger, A -
dc.contributor.author Saucedo, E -
dc.contributor.author Shin, B -
dc.contributor.author Tampo, H -
dc.contributor.author Timmo, K -
dc.contributor.author Nguyen, N D -
dc.contributor.author Vermang, B. -
dc.date.accessioned 2021-04-23T05:14:59Z -
dc.date.available 2021-04-23T05:14:59Z -
dc.date.created 2020-02-07 -
dc.date.issued 2019-10 -
dc.identifier.issn 2515-7655 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13161 -
dc.description.abstract This paper provides an overview of the physical vapor technologies used to synthesize Cu2ZnSn(S,Se)4 thin films as absorber layers for photovoltaic applications. Through the years, CZT(S,Se) thin films have been fabricated using sequential stacking or co-sputtering of precursors as well as using sequential or co-evaporation of elemental sources, leading to high-efficient solar cells. In addition, pulsed laser deposition of composite targets and monograin growth by the molten salt method were developed as alternative methods for kesterite layers deposition. This review presents the growing increase of the kesterite-based solar cell efficiencies achieved over the recent years. A historical description of the main issues limiting this efficiency and of the experimental pathways designed to prevent or limit these issues is provided and discussed as well. A final section is dedicated to the description of promising process steps aiming at further improvements of solar cell efficiency, such as alkali doping and bandgap grading. © 2019 The Author(s). Published by IOP Publishing Ltd. -
dc.language English -
dc.publisher IOP Publishing -
dc.title Physical routes for the synthesis of kesterite -
dc.type Article -
dc.identifier.doi 10.1088/2515-7655/ab281c -
dc.identifier.scopusid 2-s2.0-85102267662 -
dc.identifier.bibliographicCitation Ratz, T. (2019-10). Physical routes for the synthesis of kesterite. JPhys Energy, 1(4), 042003. doi: 10.1088/2515-7655/ab281c -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor kesterite -
dc.subject.keywordAuthor earth-abundant materials -
dc.subject.keywordAuthor absorber layer -
dc.subject.keywordAuthor thin film solar cell -
dc.subject.keywordAuthor physical vapor deposition -
dc.subject.keywordPlus CU2ZNSNSE4 SOLAR-CELLS -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus FORMATION MECHANISMS -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus CU2ZNSN(S,SE)(4) -
dc.subject.keywordPlus FABRICATION -
dc.subject.keywordPlus GE -
dc.subject.keywordPlus CU(IN,GA)SE-2 -
dc.subject.keywordPlus SULFURIZATION -
dc.subject.keywordPlus GROWTH -
dc.citation.number 4 -
dc.citation.startPage 042003 -
dc.citation.title JPhys Energy -
dc.citation.volume 1 -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

김대환
Kim, Dae-Hwan김대환

Division of Energy & Environmental Technology

read more

Total Views & Downloads