WEB OF SCIENCE
SCOPUS
Recently, the paradigm of micro-architecture design of CPUs is shifting to on-chip multi-core processors, and moreover, to many-core coprocessors for general computing such as NVIDIA’s Tesla and Intel’s Xeon Phi. Meanwhile, the MapReduce framework has been extensively used and studied for big data analysis, which runs typically on a large cluster of cheap commodity nodes. We propose a new MapReduce framework called Hybrid-core based big Data (Real-time) Analysis (HYDRA) that regards a single node equipped with both multi-core CPUs and many-core GPUs as a cluster of nodes, where a single processor plays a role of a single node. By fully exploiting the computing power of the modern heterogeneous-core systems, HYDRA could achieve a comparable performance with a small-scale cluster of nodes. Especially, HYDRA is based on the sharedmemory architecture, and so, has no cost of transferring data via network in a shuffle step of MapReduce, whereas the conventional MapReduce could have a large cost in that step depending on a kind of task. Under the proposed framework, we propose two strategies,“Processor As A Node” (PAAN) and “GPU Mapper CPU Reducer” (GMCR). PAAN considers a multiprocessor of either CPU or GPU as a node in the same way. On the other hand, GMCR considers GPUs as only mapper nodes and CPUs as only reducer nodes dissimilarly.The proposed strategies tackle the challenging issues such as how to cooperate two types of processors (i.e., CPUs and GPUs), how to manage different memory hierarchies in those types, and how to minimize data communication overhead between CPUs and GPUs. Extensive experimental results show that HYDRA outperforms the conventional MapReduce on a cluster of eight commodity nodes by up to more than 14 times. ⓒ 2013 DGIST
더보기