Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Myeong Ju -
dc.contributor.author Shin, Dong Ok -
dc.contributor.author Kim, Ju Young -
dc.contributor.author Oh, Jimin -
dc.contributor.author Kang, Seok Hun -
dc.contributor.author Kim, Jumi -
dc.contributor.author Kim, Kwang Man -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Kim, Sang Ouk -
dc.contributor.author Lee, Young-Gi -
dc.date.accessioned 2021-07-14T20:08:27Z -
dc.date.available 2021-07-14T20:08:27Z -
dc.date.created 2021-03-04 -
dc.date.issued 2021-05 -
dc.identifier.issn 2405-8297 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13816 -
dc.description.abstract Organic-inorganic hybrid solid electrolytes (HSEs) are expected to overcome the inherent limitations of rigid fragile inorganic electrolytes for solid state batteries. Li-ion conductive filler such as garnet Li7La3Zr2O12 (LLZO) is proposed for the high performance of HSEs, unfortunately, which suffers from native surface layer resistance to Li-ion transport. Here we present highly conductive polyvinylidene fluoride (PVDF)-based HSEs incorporating LLZO fillers, whose resistive barriers are eliminated by dry etching. Our optimal composition of etched LLZO fillers (30 wt%) leads to ionic conductivity of 4.05 × 10-4 S cm-1, about two-fold improvement from non-etched counterpart. Li symmetric cells with etched fillers exhibit low interfacial resistance of 110 Ω cm2 and minimal overpotential of 90 mV. Moreover, high capacity of 79 mA h g-1 is highlighted at 4C, comparable or superior to liquid electrolyte or sulfide-based electrolyte devices. Interfacial environment in HSEs ideally modified for Li-ion transport is identified by 7Li NMR measurements. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Interfacial barrier free organic-inorganic hybrid electrolytes for solid state batteries -
dc.type Article -
dc.identifier.doi 10.1016/j.ensm.2021.02.013 -
dc.identifier.wosid 000632798300004 -
dc.identifier.scopusid 2-s2.0-85101258757 -
dc.identifier.bibliographicCitation Energy Storage Materials, v.37, pp.306 - 314 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus COMPOSITE POLYMER ELECTROLYTES -
dc.subject.keywordPlus ION-CONDUCTING MEMBRANE -
dc.subject.keywordPlus DOPED LI7LA3ZR2O12 -
dc.subject.keywordPlus SURFACE-CHEMISTRY -
dc.subject.keywordPlus LITHIUM BATTERIES -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus POLYCRYSTALLINE -
dc.subject.keywordPlus SPECTROSCOPY -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus FABRICATION -
dc.citation.endPage 314 -
dc.citation.startPage 306 -
dc.citation.title Energy Storage Materials -
dc.citation.volume 37 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials & Systems LAB 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE