Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Hunge, Yuvaraj M. -
dc.contributor.author Yadav, A.A. -
dc.contributor.author Kang, Seok-Won -
dc.contributor.author Kim, Hyunmin -
dc.contributor.author Fujishima, Akira -
dc.contributor.author Terashima, Chiaki -
dc.date.accessioned 2021-07-26T20:02:30Z -
dc.date.available 2021-07-26T20:02:30Z -
dc.date.created 2021-07-08 -
dc.date.issued 2021-10 -
dc.identifier.issn 0304-3894 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13892 -
dc.description.abstract Catalytic reduction of nitroaromatic compounds present in wastewater by nanostructured materials is a promising process for wastewater treatment. A multifunctional electrode based on ternary spinal nickel cobalt oxide is used in the catalytic reduction of a nitroaromatic compound and supercapacitor application. In this study, we designed nanoflakes- like nickel cobaltite (NiCo2O4) using a simple, chemical, cost-effective hydrothermal method. Nanoflakes- like NiCo2O4 samples are tested as catalysts toward rapid reduction of 4-nitrophenol and as electrode materials for supercapacitors. The conversion of 4-nitrophenol into 4-aminophenol is achieved using a reducing agents like sodium borohydride and NiCo2O4 catalyst. Effect of catalyst loading, 4-nitrophenol and sodium borohydride concentrations on the catalytic performance of 4-nitrophenol is studied. As sodium borohydride concentration increases the catalytic efficiency of 4-nitrophenol increased due to more BH4- ions available which provides more electrons for catalytic reduction of 4-nitrophenol. Catalytic reduction of 4-nitrophenol using sodium borohydride as a reducing agent was based on the Langmuir–Hinshelwood mechanism. This mechanism follows the apparent pseudo first order reaction kinetics. Additionally, NiCo2O4 electrode is used for energy storage application. The nanoflakes-like NiCo2O4 electrode deposited at 120 °C shows a higher specific capacitance than samples synthesized at 100 and 140 °C. The maximum specific capacitance observed for NiCo2O4 electrode is 1505 Fg−1 at a scan rate of 5 mV s−1 with high stability of 95% for 5000 CV cycles. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications -
dc.type Article -
dc.identifier.doi 10.1016/j.jhazmat.2021.126453 -
dc.identifier.wosid 000694784800005 -
dc.identifier.scopusid 2-s2.0-85108956339 -
dc.identifier.bibliographicCitation Journal of Hazardous Materials, v.419, pp.126453 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Hydrothermal method -
dc.subject.keywordAuthor NiCo2O4 nanoflakes -
dc.subject.keywordAuthor Catalytic reduction -
dc.subject.keywordAuthor 4-Nitrophenol -
dc.subject.keywordAuthor Electrochemical properties -
dc.subject.keywordAuthor Supercapacitors -
dc.subject.keywordPlus HIGH-PERFORMANCE SUPERCAPACITOR -
dc.subject.keywordPlus SUPERIOR CATALYTIC-ACTIVITY -
dc.subject.keywordPlus P-NITROPHENOL -
dc.subject.keywordPlus PHOTOCATALYTIC DEGRADATION -
dc.subject.keywordPlus FACILE SYNTHESIS -
dc.subject.keywordPlus ENERGY-STORAGE -
dc.subject.keywordPlus THIN-FILM -
dc.subject.keywordPlus 4-NITROPHENOL -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus ARRAYS -
dc.citation.startPage 126453 -
dc.citation.title Journal of Hazardous Materials -
dc.citation.volume 419 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering; Environmental Sciences & Ecology -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Environmental Sciences -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Biomedical Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE