Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Zhou, Qi -
dc.contributor.author Petit, Tristan -
dc.contributor.author Choi, Hongsoo -
dc.contributor.author Nelson, Bradley J. -
dc.contributor.author Zhang, Li -
dc.date.available 2017-05-11T01:33:23Z -
dc.date.created 2017-04-10 -
dc.date.issued 2017-01 -
dc.identifier.issn 1616-301X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/1533 -
dc.description.abstract Mobile microvortices generated by rotating nickel (Ni) nanowires (NW) have been reported as capable of inducing fluidic trapping that can be precisely focused and translated to manipulate microobjects. Here, a new design for significantly enhanced fluidic trapping is reported, which is a dumbbell (DB)-shaped magnetic actuator, assembled by a Ni NW and two polystyrene microbeads. In contrast to the single mode of tumbling trapping possessed by Ni NW, the magnetic dumbbell is able to perform dynamical trapping and implement on-demand transport of microobjects in three modes, i.e., tumbling, wobbling, and rolling. Experiments are conducted to demonstrate the robustness and efficacy of the fluidic trap by the DB actuator. And simulations using a finite element model compare the fluidic traps induced by NW and DB, followed by further discussion on the actuation and transport efficiency of NW and DB fluidic tweezers (FT). At last, some practical issues regarding the application of DB FT are addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title Dumbbell Fluidic Tweezers for Dynamical Trapping and Selective Transport of Microobjects -
dc.type Article -
dc.identifier.doi 10.1002/adfm.201604571 -
dc.identifier.scopusid 2-s2.0-85005870159 -
dc.identifier.bibliographicCitation Advanced Functional Materials, v.27, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus Actuators -
dc.subject.keywordPlus CARGO TRANSPORT -
dc.subject.keywordPlus Dumbbells -
dc.subject.keywordPlus Finite Element Method -
dc.subject.keywordPlus FLOW -
dc.subject.keywordPlus Fluidic Trapping -
dc.subject.keywordPlus HYDRODYNAMIC TWEEZERS -
dc.subject.keywordPlus Low Reynolds Number Flow -
dc.subject.keywordPlus Low Reynolds Number Flows -
dc.subject.keywordPlus Magnetic Actuation -
dc.subject.keywordPlus Magnetic Actuators -
dc.subject.keywordPlus MAGNETIC HELICAL MICROMACHINES -
dc.subject.keywordPlus Magnetism -
dc.subject.keywordPlus MANIPULATION -
dc.subject.keywordPlus Micro Vortex -
dc.subject.keywordPlus MICROPARTICLES -
dc.subject.keywordPlus MICROROBOTS -
dc.subject.keywordPlus Microvortices -
dc.subject.keywordPlus Nickel -
dc.subject.keywordPlus Noncontact Manipulation -
dc.subject.keywordPlus OBJECTS -
dc.subject.keywordPlus Reynolds Number -
dc.subject.keywordPlus SINGLE CELLS -
dc.subject.keywordPlus SURFACE -
dc.citation.number 1 -
dc.citation.title Advanced Functional Materials -
dc.citation.volume 27 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-Micro Robotics Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE