Detail View

Tweaking Deep Neural Networks
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Jinwook -
dc.contributor.author Yoon, Heeyong -
dc.contributor.author Kim, Min-Soo -
dc.date.accessioned 2021-10-11T14:00:01Z -
dc.date.available 2021-10-11T14:00:01Z -
dc.date.created 2021-05-27 -
dc.date.issued 2022-09 -
dc.identifier.issn 0162-8828 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15461 -
dc.description.abstract Deep neural networks are trained so as to achieve a kind of the maximum overall accuracy through a learning process using given training data. Therefore, it is difficult to fix them to improve the accuracies of specific problematic classes or classes of interest that may be valuable to some users or applications. To address this issue, we propose the synaptic join method to tweak neural networks by adding certain additional synapses from the intermediate hidden layers to the output layer across layers and additionally training only these synapses, if necessary. To select the most effective synapses, the synaptic join method evaluates the goodness of all the possible candidate synapses between the hidden neurons and output neurons based on the distribution of all the possible proper weights. The experimental results show that the proposed method can effectively improve the accuracies of specific classes in a controllable way. CCBY -
dc.language English -
dc.publisher IEEE Computer Society -
dc.title Tweaking Deep Neural Networks -
dc.type Article -
dc.identifier.doi 10.1109/TPAMI.2021.3079511 -
dc.identifier.scopusid 2-s2.0-85105847599 -
dc.identifier.bibliographicCitation Kim, Jinwook. (2022-09). Tweaking Deep Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 1–1. doi: 10.1109/TPAMI.2021.3079511 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Artificial neural networks -
dc.subject.keywordAuthor Arrays -
dc.subject.keywordAuthor Biological neural networks -
dc.subject.keywordAuthor Deep neural networks -
dc.subject.keywordAuthor Neurons -
dc.subject.keywordAuthor Synapses -
dc.subject.keywordAuthor synaptic join -
dc.subject.keywordAuthor Training -
dc.subject.keywordAuthor Training data -
dc.subject.keywordPlus Overall accuracies -
dc.subject.keywordPlus Specific class -
dc.subject.keywordPlus Training data -
dc.subject.keywordPlus Multilayer neural networks -
dc.subject.keywordPlus Deep neural networks -
dc.subject.keywordPlus Hidden layers -
dc.subject.keywordPlus Hidden neurons -
dc.subject.keywordPlus Learning process -
dc.subject.keywordPlus OR applications -
dc.subject.keywordPlus Output neurons -
dc.citation.endPage 1 -
dc.citation.number 9 -
dc.citation.startPage 1 -
dc.citation.title IEEE Transactions on Pattern Analysis and Machine Intelligence -
dc.citation.volume 44 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads