Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
Department of Robotics and Mechatronics Engineering
Medical Image & Signal Processing Lab
1. Journal Articles
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening
Chikontwe, Philip
;
Luna, Acevedo Miguel Andres
;
Kang, Myeongkyun
;
Hong, Kyung Soo
;
Ahn, June Hong
;
Park, Sang Hyun
Department of Robotics and Mechatronics Engineering
Medical Image & Signal Processing Lab
1. Journal Articles
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening
Issued Date
2021-08
Citation
Chikontwe, Philip. (2021-08). Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening. Medical Image Analysis, 72, 102105. doi: 10.1016/j.media.2021.102105
Type
Article
Author Keywords
COVID-19
;
CT images
;
Deep learning
;
Multiple instance learning
;
Unsupervised complementary loss
Keywords
Overall accuracies
;
Reverse transcription-polymerase chain reaction
;
Spatial attention
;
Spatial context
;
Diagnosis
;
Computerized tomography
;
Large dataset
;
Learning systems
;
Polymerase chain reaction
;
Transcription
;
Clinical diagnosis
;
False positive
;
Large datasets
;
Multiple-instance learning
ISSN
1361-8415
Abstract
Chest computed tomography (CT) based analysis and diagnosis of the Coronavirus Disease 2019 (COVID-19) plays a key role in combating the outbreak of the pandemic that has rapidly spread worldwide. To date, the disease has infected more than 18 million people with over 690k deaths reported. Reverse transcription polymerase chain reaction (RT-PCR) is the current gold standard for clinical diagnosis but may produce false positives; thus, chest CT based diagnosis is considered more viable. However, accurate screening is challenging due to the difficulty in annotation of infected areas, curation of large datasets, and the slight discrepancies between COVID-19 and other viral pneumonia. In this study, we propose an attention-based end-to-end weakly supervised framework for the rapid diagnosis of COVID-19 and bacterial pneumonia based on multiple instance learning (MIL). We further incorporate unsupervised contrastive learning for improved accuracy with attention applied both in spatial and latent contexts, herein we propose Dual Attention Contrastive based MIL (DA-CMIL). DA-CMIL takes as input several patient CT slices (considered as bag of instances) and outputs a single label. Attention based pooling is applied to implicitly select key slices in the latent space, whereas spatial attention learns slice spatial context for interpretable diagnosis. A contrastive loss is applied at the instance level to encode similarity of features from the same patient against representative pooled patient features. Empirical results show that our algorithm achieves an overall accuracy of 98.6% and an AUC of 98.4%. Moreover, ablation studies show the benefit of contrastive learning with MIL. © 2021
URI
http://hdl.handle.net/20.500.11750/15514
DOI
10.1016/j.media.2021.102105
Publisher
Elsevier BV
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Related Researcher
Park, Sang Hyun
박상현
Department of Robotics and Mechatronics Engineering
read more
Total Views & Downloads