Detail View

Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries
Issued Date
2021-10
Citation
Kim, Ju Young. (2021-10). Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries. Energy Storage Materials, 41, 289–296. doi: 10.1016/j.ensm.2021.06.005
Type
Article
Author Keywords
All-solid-state lithium batteriesDiffusion-dependentElectrode designTitanium disulfide
Keywords
COMPOSITE ELECTROLYTESHIGH-VOLTAGEPOLYMERELECTRODESSTABILITYDISCHARGECAPACITYDESIGNMODELTHIN
ISSN
2405-8297
Abstract
All-solid-state lithium batteries require a well-designed electrode structure to efficiently charge and discharge active materials. Mimicking electrodes impregnated with liquid electrolyte in lithium-ion batteries, composite-type all-solid-state electrodes have been widely utilized. An alternative electrode configuration is the diffusion-dependent electrode, which consists mostly of active material. Unlike the composite electrode, which uses lithium-ion transport via a percolated solid electrolyte, the diffusion-dependent electrode uses interparticle lithium-ion diffusion through active material particles with a seamless interface. In this design, the energy density dramatically increases owing to the increased content of active material in the electrode. Herein, titanium disulfide (TiS2) is systematically explored as an appropriate material applicable as a diffusion-dependent cathode owing to its outstanding mechanical and electrochemical properties. Based on the morphology-based study of TiS2 particles, the diffusion-dependent cathode composed of spherical TiS2 nanoparticles stably delivers high areal and volumetric capacities of ~ 9.43 mAh/cm2 and ~ 578 mAh/cm3, respectively, at a loading level of 45.6 mg/cm2, which corresponds to specific energy densities of 414 Wh/kgelectrode and 1155 Wh/Lelectrode. The proposed TiS2 electrode, which can be fabricated by a practical slurry-based process using a conventional binder and solvent, is a strong candidate as a cathode for commercially available all-solid-state lithium batteries. © 2021 Elsevier B.V.
URI
http://hdl.handle.net/20.500.11750/15525
DOI
10.1016/j.ensm.2021.06.005
Publisher
Elsevier BV
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads