WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Park, Seonghwan | - |
| dc.contributor.author | Kim, Youhyun | - |
| dc.contributor.author | Moon, Inkyu | - |
| dc.date.accessioned | 2021-11-24T07:00:02Z | - |
| dc.date.available | 2021-11-24T07:00:02Z | - |
| dc.date.created | 2021-11-11 | - |
| dc.date.issued | 2021-11 | - |
| dc.identifier.issn | 2156-7085 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/15847 | - |
| dc.description.abstract | Digital holography can provide quantitative phase images related to the morphology and content of biological samples. After the numerical image reconstruction, the phase values are limited between −π and π; thus, discontinuity may occur due to the modulo 2π operation. We propose a new deep learning model that can automatically reconstruct unwrapped focused-phase images by combining digital holography and a Pix2Pix generative adversarial network (GAN) for image-to-image translation. Compared with numerical phase unwrapping methods, the proposed GAN model overcomes the difficulty of accurate phase unwrapping due to abrupt phase changes and can perform phase unwrapping at a twice faster rate. We show that the proposed model can generalize well to different types of cell images and has high performance compared to recent U-net models. The proposed method can be useful in observing the morphology and movement of biological cells in real-time applications. © 2021 Optical Society of America | - |
| dc.language | English | - |
| dc.publisher | The Optical Society | - |
| dc.title | Automated phase unwrapping in digital holography with deep learning | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1364/BOE.440338 | - |
| dc.identifier.scopusid | 2-s2.0-85118418870 | - |
| dc.identifier.bibliographicCitation | Park, Seonghwan. (2021-11). Automated phase unwrapping in digital holography with deep learning. Biomedical Optics Express, 12(11), 7064–7081. doi: 10.1364/BOE.440338 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordPlus | NETWORK | - |
| dc.subject.keywordPlus | BRANCH-CUT ALGORITHM | - |
| dc.subject.keywordPlus | NUMERICAL RECONSTRUCTION | - |
| dc.subject.keywordPlus | ROBUST | - |
| dc.subject.keywordPlus | IMAGE | - |
| dc.subject.keywordPlus | INTERFEROMETRY | - |
| dc.subject.keywordPlus | MICROSCOPY | - |
| dc.subject.keywordPlus | CONTRAST | - |
| dc.citation.endPage | 7081 | - |
| dc.citation.number | 11 | - |
| dc.citation.startPage | 7064 | - |
| dc.citation.title | Biomedical Optics Express | - |
| dc.citation.volume | 12 | - |