Detail View

A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography
Issued Date
2021-11
Citation
Ryu, Gahyung. (2021-11). A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. Scientific Reports, 11(1). doi: 10.1038/s41598-021-02479-6
Type
Article
Keywords
PERIPHERAL LESIONSRANIBIZUMABCLASSIFICATIONPHOTOGRAPHYDIAGNOSISSEVERITYDENSITYIMAGESLASER
ISSN
2045-2322
Abstract
As the prevalence of diabetes increases, millions of people need to be screened for diabetic retinopathy (DR). Remarkable advances in technology have made it possible to use artificial intelligence to screen DR from retinal images with high accuracy and reliability, resulting in reducing human labor by processing large amounts of data in a shorter time. We developed a fully automated classification algorithm to diagnose DR and identify referable status using optical coherence tomography angiography (OCTA) images with convolutional neural network (CNN) model and verified its feasibility by comparing its performance with that of conventional machine learning model. Ground truths for classifications were made based on ultra-widefield fluorescein angiography to increase the accuracy of data annotation. The proposed CNN classifier achieved an accuracy of 91–98%, a sensitivity of 86–97%, a specificity of 94–99%, and an area under the curve of 0.919–0.976. In the external validation, overall similar performances were also achieved. The results were similar regardless of the size and depth of the OCTA images, indicating that DR could be satisfactorily classified even with images comprising narrow area of the macular region and a single image slab of retina. The CNN-based classification using OCTA is expected to create a novel diagnostic workflow for DR detection and referral. © 2021, The Author(s). Author Correction: https://doi.org/10.1038/s41598-022-25510-w
URI
http://hdl.handle.net/20.500.11750/15959
DOI
10.1038/s41598-021-02479-6
Publisher
Nature Publishing Group
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

박상현
Park, Sang Hyun박상현

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads