Detail View

Graphite-Silicon Diffusion-Dependent Electrode with Short Effective Diffusion Length for High-Performance All-Solid-State Batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Ju Young -
dc.contributor.author Jung, Seungwon -
dc.contributor.author Kang, Seok Hun -
dc.contributor.author Park, Joonam -
dc.contributor.author Lee, Myeong Ju -
dc.contributor.author Jin, Dahee -
dc.contributor.author Shin, Dong Ok -
dc.contributor.author Lee, Young-Gi -
dc.contributor.author Lee, Yong Min -
dc.date.accessioned 2021-12-28T02:00:04Z -
dc.date.available 2021-12-28T02:00:04Z -
dc.date.created 2021-12-24 -
dc.date.issued 2022-01 -
dc.identifier.issn 1614-6832 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15975 -
dc.description.abstract Electrode design, which is closely related to electronic and ionic transport, is an essential factor that influences the performance of all-solid-state batteries. An in-depth understanding of the movement of the charge carriers and its relationship to the electrode structure are urgently needed for the realization of advanced energy storage devices. Herein, a simple electrode configuration, which consists mostly of blended active materials of graphite and silicon, is presented to simultaneously satisfy the high power and high energy density of all-solid-state batteries. This electrode efficiently utilizes interdiffusion between the active material particles for charge/discharge. Mechanically compliant graphite accommodates the volume change of silicon and continuously provides abundant electrons to silicon, which enables a stable electrochemical reaction. Silicon with its higher volumetric capacity compared to graphite, shortens the effective diffusion pathway in the electrode. In particular, the use of the nanometer-scale silicon leads to its uniform distribution throughout the electrode, which increases the contact area capable of interdiffusion between the graphite and silicon and reduces the diffusion in the agglomerated silicon with relatively low diffusivity. This morphology-induced electrochemical change dramatically increases the achievable capacities at higher current densities (93.8% capacity retention (2.76 mAh cm(-2)) at 0.5 C-rate (1.77 mA cm(-2)) relative to the capacity at 0.1 C-rate). © 2021 Wiley-VCH GmbH -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title Graphite-Silicon Diffusion-Dependent Electrode with Short Effective Diffusion Length for High-Performance All-Solid-State Batteries -
dc.type Article -
dc.identifier.doi 10.1002/aenm.202103108 -
dc.identifier.wosid 000730235800001 -
dc.identifier.scopusid 2-s2.0-85121353645 -
dc.identifier.bibliographicCitation Kim, Ju Young. (2022-01). Graphite-Silicon Diffusion-Dependent Electrode with Short Effective Diffusion Length for High-Performance All-Solid-State Batteries. Advanced Energy Materials, 12(3), 2103108. doi: 10.1002/aenm.202103108 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor all-solid-state electrodes -
dc.subject.keywordAuthor diffusion -
dc.subject.keywordAuthor graphite -
dc.subject.keywordAuthor silicon -
dc.subject.keywordPlus INTERFACE STABILITY -
dc.subject.keywordPlus ENERGY DENSITY -
dc.subject.keywordPlus LI -
dc.subject.keywordPlus ANODES -
dc.subject.keywordPlus CATHODES -
dc.subject.keywordPlus LI6PS5X -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus ORIGIN -
dc.subject.keywordPlus REDOX -
dc.subject.keywordPlus SI -
dc.citation.number 3 -
dc.citation.startPage 2103108 -
dc.citation.title Advanced Energy Materials -
dc.citation.volume 12 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads