Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kumar, Neetesh -
dc.contributor.author Lee, Hock Beng -
dc.contributor.author Sahani, Rishabh -
dc.contributor.author Tyagi, Barkha -
dc.contributor.author Cho, Sinyoung -
dc.contributor.author Lee, Jong-Soo -
dc.contributor.author Kang, Jae-Wook -
dc.date.accessioned 2022-01-04T12:00:01Z -
dc.date.available 2022-01-04T12:00:01Z -
dc.date.created 2021-12-24 -
dc.date.issued 2022-02 -
dc.identifier.issn 2366-9608 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16036 -
dc.description.abstract The performance and scalability of perovskite solar cells (PSCs) is highly dependent on the morphology and charge selectivity of the electron transport layer (ETL). This work demonstrates a high-speed (1800 mm min−1), room-temperature (25 °C–30 °C) deposition of large-area (62.5 cm2) tin oxide films using a multi-pass spray deposition technique. The spray-deposited SnO2 (spray-SnO2) films exhibit a controllable thickness, a unique granulate morphology and high transmittance (≈85% at 550 nm). The performance of the PSC based on spray-SnO2 ETL and formamidinium lead iodide (FAPbI3)-based perovskite is highly consistent and reproducible, achieving a maximum efficiency of ≈20.1% at an active area (A) of 0.096 cm2. Characterization results reveal that the efficiency improvement originates from the granular morphology of spray-SnO2 and high conversion rate of PbI2 in the perovskite. More importantly, spray-SnO2 films are highly scalable and able to reduce the efficiency roll-off that comes with the increase in contact-area between SnO2 and perovskite film. Based on the spray-SnO2 ETL, large-area PSC (A = 1.0 cm2) achieves an efficiency of ≈18.9%. Furthermore, spray-SnO2 ETL based PSCs also exhibit higher storage stability compared to the spin-SnO2 based PSCs. © 2021 Wiley-VCH GmbH -
dc.language English -
dc.publisher John Wiley and Sons Inc -
dc.title Room-Temperature Spray Deposition of Large-Area SnO2 Electron Transport Layer for High Performance, Stable FAPbI(3)-Based Perovskite Solar Cells -
dc.type Article -
dc.identifier.doi 10.1002/smtd.202101127 -
dc.identifier.wosid 000729098600001 -
dc.identifier.scopusid 2-s2.0-85120891343 -
dc.identifier.bibliographicCitation Small Methods, v.6, no.2 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor scalability -
dc.subject.keywordAuthor spin-coating -
dc.subject.keywordAuthor spray-coating -
dc.subject.keywordAuthor charge selectivity -
dc.subject.keywordAuthor defects -
dc.subject.keywordPlus HIGH-EFFICIENCY -
dc.subject.keywordPlus INTERFACE -
dc.subject.keywordPlus ABSORBER -
dc.citation.number 2 -
dc.citation.title Small Methods -
dc.citation.volume 6 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article; -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering MNEDL(Multifunctional Nanomaterials & Energy Devices Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE