Detail View

Machine Learning to Identify Psychomotor Behaviors of Delirium for Patients in Long-Term Care Facility
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Machine Learning to Identify Psychomotor Behaviors of Delirium for Patients in Long-Term Care Facility
Issued Date
2022-04
Citation
Son, Chang-Sik. (2022-04). Machine Learning to Identify Psychomotor Behaviors of Delirium for Patients in Long-Term Care Facility. IEEE Journal of Biomedical and Health Informatics, 26(4), 1802–1814. doi: 10.1109/jbhi.2021.3116967
Type
Article
Author Keywords
Deliriummachine learningpredictive modelpsychomotor behaviors of deliriumrule learning
Keywords
CONFUSION ASSESSMENT METHODRISK-FACTORSVALIDATIONDIAGNOSISSUBTYPESUNIT
ISSN
2168-2194
Abstract
This study aimed to develop accurate and explainable machine learning models for three psychomotor behaviors of delirium for hospitalized adult patients. A prospective pilot study was conducted with 33 participants admitted to a long-term care facility between August 10 and 25, 2020. During the pilot study, we collected 560 cases that included 33 clinical variables and the survey items from the short confusion assessment method (S-CAM), and developed a mobile-based application. Multiple machine learning algorithms, including four rule-mining algorithms (C4.5, CBA, MCAR, and LEM2) and four other statistical learning algorithms (LR, ANNs, SVMs with three kernel functions, and random forest), were validated by paired Wilcoxon signed-rank tests on both macro-averaged F1 and weighted average F1-measures during the 10-times stratified 2-fold cross-validation. The LEM2 algorithm achieved the best prediction performance (macro-averaged F1-measure of 49.35%; weighted average F1-measure of 96.55%), correctly identifying adult patients at delirium risk. In the pairwise comparison between predictive powers observed from independent models, the LEM2 model showed a medium or large effect size between 0.4925 and 0.8766 when compared with LR, ANN, SVM with RBF, and MCAR models. We have confirmed that acute consciousness in S-CAM assessment is closely associated with different predictors for screening three psychomotor behaviors of delirium: 1) education level, dementia type or its level, sleep disorder, dehydration, and infection in mixed-type delirium; 2) gender, education level, dementia type, dehydration, bedsores, and foley catheter in hyperactive delirium; and 3) pain, sleep disorder, and haloperidol use in hypoactive delirium. Author
URI
http://hdl.handle.net/20.500.11750/16113
DOI
10.1109/jbhi.2021.3116967
Publisher
Institute of Electrical and Electronics Engineers Inc.
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

강원석
Kang, Won-Seok강원석

Division of Intelligent Robotics

read more

Total Views & Downloads