Cited time in webofscience Cited time in scopus

Investigation of molecular actions of inhibitory synaptic proteins regulating the GABAergic synaptic functions

Title
Investigation of molecular actions of inhibitory synaptic proteins regulating the GABAergic synaptic functions
Author(s)
Seungjoon Kim
DGIST Authors
Seungjoon KimJaewon KoEunji Cheong
Advisor
고재원
Co-Advisor(s)
Eunji Cheong
Issued Date
2022
Awarded Date
2022/02
Type
Thesis
Subject
Inhibitory synapse, Gephyrin, IQSEC3, Npas4, Neurological disorder
Description
Inhibitory synapse, Gephyrin, IQSEC3, Npas4, Neurological disorder
Abstract
시냅스는 신경회로의 기본적 단위로써, 뉴런들을 연결하며 서로 정보를 전달하는데 기여한다. 중추신경계에서 시냅스는 크게 glutamatergic과 GABAergic 시냅스로 구성되며, 이 둘은 각각 시냅스후 뉴런을 흥분 또는 억제시킨다. 실험 기술의 발달로, GABAergic 시냅스 역시 glutamatergic synapse 만큼이나 복잡한 단백질 구성과 조절 기전을 가지고 있다는 것이 밝혀졌다. 그러나, 개개의 억제성 시냅스 단백질의 기능에 대해서는 연구가 되어야 한다. 이 논문에서, 나는 억제성 시냅스의 중심 단백질인 gephyrin, 그리고 최근 새롭게 밝혀진 gephyrin-결합 단백질인 IQSEC3 사이의 관계성과 이 단백질들이 매개하는 신경 질환의 발병 기전에 대해 연구하였다. 그에 더해서, 뇌 특이적으로 발현하는 전사 인자인 Npas4를 통해 IQSEC3의 발현이 조절된다는 것을 밝혀냈다.
Gephyrin은 억제성 시냅스의 구조, 기능, 그리고 가소성에 관여하다. Gephyrin의 돌연변이와 신경계 질환의 연관성에 대한 많이 연구에 있었던 것에 반해, 이것에 대한 심도 깊은 연구는 아직 이뤄지지 않았다. 나는 자폐증과 뇌전증 환자의 gephyrin 돌연변이 정보를 모아, in slico 소프트웨어들을 이용해 돌연변이들이 진화적 또는 구조적으로 gephyrin에 위험이 있는지 평가했으며, 돌연변이 G375D가 공통적으로 높은 위험성을 갖는다는 것을 확인했다. 돌연변이 A91T와 G375D는 세포 안에서 비정상적은 클러스터 형성을 하였을 뿐만 아니라 뉴런에서 시냅스를 촉진하는 기능을 하지 못했다. 또한, G375D를 쥐의 해마에 발현시켰을 때, 억제성 시냅스의 중요 단백질인 GABAA 수용체와 neuroligin-2의 결합 감소와 억제성 시냅스의 형성이 저해되는 것을 발견했다. 이에 더해서, gephyrin 녹아웃 쥐에서 보이는 뇌전증 취약성이 G375D에 의해서는 회복되지 않았다. 이러한 발견들은 억제성 시냅스 핵심 단백질인gephyrin이 매개하는 신경 질환들의 발병 원인 이해에 기여할 것이라고 생각한다.
Gephyrin은 다양한 단백질들과 결합-협력하여 억제성 시냅를 조절한다. IQSEC3는 최근 발견된 Gephyrin 결합 단백질로써 ARF-GEF 효소 활성을 통해 억제성 시냅스 형성에 관여하는 것이 밝혀졌다. 나는 뇌전증 환자에게서 발견되는 Gephyirn의 G-domain에 비정상적으로 발생하는 액손 손실이 IQSEC3와의 결합을 방해했다. 더욱이, 뉴런에서 Gephyrin이 유발하는 억제성 시냅스 형성이 IQSEC3에 의해 매개되는 것을 확인했다. 쥐의 해마에서 IQSEC3를 제거했을 때, 억제성 시냅스의 개수가 감소했다. 그 감소는 WT IQSEC3에 의해 회복되었으나, ARF-GEF를 비활성시킨 IQSEC3에 의해서는 회복되지 않았다. 해마에서 IQSEC3를 제거한 쥐들은 뇌전증에 대한 취약성이 증가되었고, 뇌전증 유발에 ARF-GEF 효소 활성이 중요함을 확인했다. 종합적으로, 이 연구들은 IQSEC3가 동물 모델에서 억제성 시냅스 형성-유지와 뇌전증 유발에서의 중요성을 제시했다.
흥분과 억제 사이의 균형은 신경회로의 정상적 기능 유지에 중요하다. 억제성 시냅스 역시 뉴런 활성에 반응해서 장기 가소성 보인다는 많은 증거들이 제시되었다. 하지만 그 것에 대한 분자적 기작에 대해서는 여전히 밝혀져야 할 부분이 많다. 나는 뇌 특이적으로 발현하는 전사 인자인 Npas4가 IQSEC3 프로모터에 직접 결합하여 IQSEC3 전사를 유도한다는 것을 증명했다. 동물 모델에서 뉴런을 활성 시키기 위해서, 약물로 뇌전증 유발시키거나 풍요로운 환경(enriched environment)에 노출시켰다. 두 가지 조건에서, 해마 CA1 SO층에 있는 소마토스테틴 뉴런 특이적으로 Npas4에 의해 IQSEC3의 발현이 증가하는 것을 확인했다. SST-Npas4 낙아웃 쥐(소마토스테틴 뉴런 특이적으로 Npas4를 제거한)에서 소마토스테틴 뉴런의 억제성 시냅스가 감소하는 것을 확인했으며, 그것에 의해 CA1 피라미드 뉴런의 활성이 조절되었다. SST-Npas4 낙아웃 쥐는 불안성 행동이 경감되는 것으로 보이며, 그 것은 IQSEC3에 의해 정상화 되었다. 이런 분자적, 행동적 조절들은 ARF-GEF 효소 활성에 의존적이었다. 마지막으로, 화학유전학 기법을 통해 소마토스테틴 뉴런을 억제 시켰을 때, SST-Npas4 낙아웃 쥐에서 보인 불안증 관련 행동이 회복되는 것을 확인했다. 이 연구들은 불안 행동을 조절하는데 소마토스테틴 뉴런에서 특이적으로 일어나는 Npas4-IQSEC3 억제성 시냅스 조절 기전의 원리를 규명한다.
|A synapse is the basic unit of a brain circuit, where neurons send and receive information from each other. The two major types of central synapses, glutamatergic and GABAergic synapses, perform opposing roles in excitation and inhibition, respectively. With the advancement of experimental techniques, it has been discovered that GABAergic synapses, like glutamatergic synapses, have dynamic synaptic protein machinery and plasticity. However, the functions of individual proteins still need to be studied. Here, I investigated the roles of gephyrin, an inhibitory synapse hub protein, IQSEC3, a newly identified binding partner of gephyrin, and Npas4, an inhibitory synapse-specific transcription factor, from genes to behavior levels.
Gephyrin is a central element in the construction, function, and plasticity of inhibitory synapses. Despite many implications of the connection between gephyrin mutations and neurological disorders, comprehensive investigations of the functions of these mutations remain to be done. Here, I compiled a list of mutations found in patients with autism and epilepsy and pre-screened their evolutionary and structural risks using various in slico software, which commonly found the disease-causing properties of G375D, a mutant of gephyrin. A91T and G375D, gephyrin mutants, exhibited an altered aggregation pattern in non-neuronal cells as well as a lack of synapse targeting and synapse-promoting activity in hippocampal cultured neurons. Importantly, only G375D mutation significantly reduced gephyrin's interaction with GABAARγ2, a component of GABA-A receptor, and neuroligin-2 in the mouse hippocampus; G375D also failed to restore the reduction in pre- and post-inhibitory synapse markers, GABAARγ2 and vGAT, observed in gephyrin knock-out (KO) mice. Remarkably, the epileptic susceptibility seen in gephyrin KO mice was restored by expressing wild type (WT) gephyrin, but not restored by expressing G375D. These findings shed light on the pathogenic effects of G375D mutation through biochemical, cell-biological, and behavioral consequences.
Gephyrin interacts with a variety of GABAergic synaptic proteins to coordinate the formation of GA-BAergic synapses. IQSEC3 was recently identified as a gephyrin-binding protein which orchestrates GA-BAergic synapse formation via its ADP-ribosylation factor-guanine nucleotide exchange factor (ARF-GEF) activity. Here, I show that exon-deleted mutants of gephyrin associated with epilepsy exhibit impaired binding to IQSEC3, and the mutants are shown to be incapable of oligomerization and thus of attracting IQSEC3 in COS-7 cells, all of which are reproduced by each G-domain exon deletion construct. Overexpression of WT gephyrin, but not gephyrin exonic-deletion mutants, increased the density of GABAA receptor-positive puncta in cultured hippocampal neurons in an IQSEC3-dependent manner. Moreover, IQSEC3 knockdown (KD) reduced GABAergic synaptic density in vivo, suggesting that IQSEC3 is required for GABAergic synapse development. Furthermore, in IQSEC3-deleted hippocampal dentate gyrus (DG), GABAergic synaptic density was decreased, which was fully recovered by expressing WT IQSEC3, but not by expressing an ARF-GEF–inactive mutant (E749A). I further demonstrated that IQSEC3 KD in DG induces spontaneous seizure and increases vulnerability in a drug-induced epilepsy model, which is modulated by IQSEC3’s ARF-GEF activity. Collectively, these observations suggest that the absence of IQSEC3 in GABAergic synapses disrupts synapse maintenance in vivo and leads to epilepsy development with ARF-dependent pathways.
The functional stability of neural circuits is believed to be dependent on the balance between synaptic excitation and inhibition. According to a growing body of research, inhibitory GABAergic synapses can exhibit long-term plasticity in response to changes in neuronal activity. However, the molecular understanding of inhibitory synapses still largely remains to be elucidated. Here, I demonstrate that neuronal PAS-domain protein 4 (Npas4) binds directly to the IQSEC3 promoter and induces its transcription in vitro. Drug-induced seizures or enriched environment, the paradigms inducing neuronal activation, cause Npas4-mediated up-regulation of IQSEC3 protein in CA1 stratum oriens layer somatostatin (SST) positive GABAergic interneurons. SST+ interneuron-specific deletion of Npas4 (SST-Npas4 KO) disrupts the GABAergic post-synapse, causing the interneuron to be self-disinhibited, which in turn leads to the activation of the CA1 pyramidal neuron. SST-Npas4 KO mice show a reduction in anxiety-related behaviors, all of which are normalized by the expression of wild-type IQSEC3, but not a dominant-negative ARF-GEF-inactive mutant. Finally, chemogenetic activation of the SST+ interneuron returns anxiety symptoms to normal levels in mice. The present study suggests that under the control of Npas4, IQSEC3 is an essential protein that regulates GA-BAergic synapses in SST+ interneurons to modulate anxiety-related behaviors.
Table Of Contents
I. Introduction 1
1.1 Introduction 1
1.2 GABAA receptors and GABAergic synapse development 2
1.3 GABA activity-induced synapse formation 3
1.4 Activity-dependent regulation of GABAergic synapse 4
1.5 Molecular Dynamics of Inhibitory Synapses 5
1.6 Gephyrin 6
1.6.1 Domains of Gephyrin and their features 6
1.6.2 Synaptic function of Gephyirn 7
1.6.3 Gephyrin dysfunction associated with neurological disorder 8
1.7 IQSEC3 10
1.7.1 IQSEC family and its catalytic activity mediated by ARF protein 10
1.7.2 Synaptic role of IQSEC3 mediated by Gephyrin binding 11
1.7.3 Studies on the relationship between IQSEC3 and brain disorders 12
1.8 Npas4 12
1.8.1 Activity-dependent regulation of Npas4 expression 12
1.8.2 Synaptic functions of Npas4 14
1.8.3 Npas4-mediated gene expression program 15
II. MATERIALS AND METHODS 18
2.1 Materials 18
2.1.1 Construction of Expression Vectors 18
2.1.2 Antibodies 19
2.1.3 Animals 19
2.2 Methods 19
2.2.1 AAV Production, Stereotactic Surgery and Virus Injection 20
2.2.2 Activity Alteration Protocols 20
2.2.3 Chemogenetic Manipulation with DREADDs 21
2.2.4 Gel Filtration Chromatography 21
2.2.5 Immunohistochemistry and Imaging 21
2.2.6 In Vivo Coimmunoprecipitation Assays 22
2.2.7 Iqsec3 Promoter-luciferase Reporter Analysis 23
2.2.8 Mouse Behavioral Tests 23
2.2.9 Neuron Culture, Transfections, Imaging, and Quantitation. 25
2.2.10 Quantitative RT-PCR 25
2.2.11 Seizure Behavior Scoring 26
2.2.12 Data Analysis and Statistics 26
III. RESULTS 27
3.1 Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies 27
3.1.1 In slico Analysis of Gephyrin Missense Mutations Originated from Human Patients with Neurological Disorders 27
3.1.2 Gephyrin G375D Fails to Promote Oligomerization and GABAergic Synapse Formation in vitro. 28
3.1.3 Gephyrin G375D Didn’t Restore GABAergic Synapse Formation in Hippocampal Dentate Gyrus Granule Neurons of Gephyrin KO Mice 29
3.1.4 Gephyrin G375D Fails to Restore Heightened Seizure Susceptibility Induced by Gephyrin Knockout 30
3.2 IQSEC3 controls hippocampal network activity in ARF-GEF dependent manner 44
3.2.1 Abnormal Splicing Variants of Gephyrin Associated with Epilepsy are Defective in Binding to IQSEC3 44
3.2.2 IQSEC3 maintains GABAergic Synapse in Hippocampal DG through its ARF-GEF Activity 45
3.2.3 IQSEC3 Deletion Increases Seizure Susceptibility in ARF-GEF Activity-Dependent Manner 46
3.2.4 IQSEC3 Deletion in the Hippocampal DG Induces Depletion of SST Peptides 47
3.2.5 Expression of SST in DG-Specific IQSEC3-KD Mice Rescues Deficits in GA-BAergic Synapse Density and Enhanced Seizure Susceptibility 47
3.2.6 SST Promotes Accumulation of Surface GABAA Receptors in Cultured Hippocampal Neurons 48
3.3 Npas4 regulates IQSEC3 expression in hippocampal somatostatin interneurons to mediate anxiety-like behavior 62
3.3.1 Npas4 Binds to Iqsec3 Promoter 62
3.3.2 Npas4 Induces IQSEC3 Expression in an Activity-dependent Manner in Somatostatin-positive Interneurons of Hippocampal CA1 Region 62
3.3.3 IQSEC3 is Required for Postsynaptic GABAergic Synaptic Development in SST-Npas4-KO Mice 64
3.3.4 The Npas4-IQSEC3 Pathway in SST+ interneurons Dictated the Neuronal Activity of Hippocampal CA1 Pyramidal Neurons 65
3.3.5 Npas4 Knockout in SST+ Interneurons Had No Effect on Spatial Working Memory, Locomotion, Depressive-like Behavior, or Novel Object-recognition Memory. 65
3.3.6 IQSEC3 Mediates Hippocampal CA1 SST- and Npas4-dependent Anxiety-like Behavior. 66
3.3.7 CNO-mediated DREADD Inhibition of SST+ Interneurons in SST-Npas4 KO Mice is Sufficient to Restore Anxiety-related Behavior 66
IV. DISCUSSION & CONCLUSION 86
4.1 General Conclusion related with 3.1, 3.2, 3.3 86
4.2 Discussion & Conclusion related with Result 3.1 87
4.3 Discussion & Conclusion related with Result 3.2 89
4.4 Discussion & Conclusion related with Result 3.3 91
V. REFERENCE 95
URI
http://dgist.dcollection.net/common/orgView/200000594509

http://hdl.handle.net/20.500.11750/16296
DOI
10.22677/thesis.200000594509
Degree
Doctor
Department
Brain and Cognitive Sciences
Publisher
DGIST
Related Researcher
  • 고재원 Ko, Jaewon
  • Research Interests Synapse Formation and Function; Neural Circuits; 뇌질환; animal model
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Brain Sciences Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE