Cited time in webofscience Cited time in scopus

Satellite Network Design with High Frequency and Optical Communication

Title
Satellite Network Design with High Frequency and Optical Communication
Author(s)
Yonghwa Lee
DGIST Authors
Yonghwa LeeJeongho KwakJihwan P. Choi
Advisor
곽정호
Co-Advisor(s)
Jihwan P. Choi
Issued Date
2022
Awarded Date
2022/02
Type
Thesis
Subject
satellite communication, mobile satellite service (MSS), land mobile satellite (LMS) channel, Doppler effect, time-varying satellite topology, mega-constellation, inter-satellite link (ISL), optical communication, end-to-end routing
Description
satellite communication, mobile satellite service (MSS), land mobile satellite (LMS) channel, Doppler effect, time-varying satellite topology, mega-constellation, inter-satellite link (ISL), optical communication, end-to-end routing
Abstract
종래의 위성 통신은 지상 통신시스템을 보조하는 역할을 주로 수행해 오며 매우 작은 전송 용량의 서비스를 제공해왔다. 그러나 최근 5G 상용화와 B5G/6G 기술 개발이 복격화되며 위성 통신이 새롭게 주목 받고 있으나 아직 지상 통신 시스템과 같이 원활한 광대역 통신 서비스 제공에는 어려움이 있어 많은 도전과제들을 해결해야하는 상황이다. 따라서 본 논문에서는 정지궤도 위성 및 저궤도 위성 통신 시스템에서 신뢰성 있고 원활한 서비스 제공을 위한 네트워크 시스템 성능 분석을 수행하고 앞으로 새로운 위성 통신 네트워크 설계를 위한 초석을 마련하고 나아가야할 방향을 제시한다.
첫 번째는 고주파 대역을 사용하는 정지궤도 위성통신에서의 이동통신서비스에 관한 분석이다. 지상 시스템 기술의 발전에 따라 위성통신에서도 이동통신 수요가 증가하고 있으며, 기존의 저주파 대역이 포화상태에 근접함에 따라 고주파 혹은 초고주파대역을 사용해야하는 상황에 놓여 있다. 고주파 대역에서의 이동통신 서비스는 매우 큰 성능 저하를 초래하므로 이를 타개하고 이동위성서비스의 제공 가능성을 확인하기 위해 지상으로부터의 피드백 채널 정보를 활용하여 전송 전력을 제어하는 시스템을 제안하였다.
두 번째는 새로운 저궤도 위성 토폴로지에서 위성간 연결성에 대한 분석이다. 최근 수 백 혹은 수천 이상의 위성이 배치된 콘스텔레이션 모델의 등장으로 위성 네트워크의 시스템 모델을 재정의해야 한다. 그에 따라 증가된 위성, 저궤도 위성의 시변-위성 토폴로지 특성과 함게 광통신 시스템의 정확한 링크 연결에 대한 요구사항을 고려하여 위성 간 가시성 분석을 수행하였고, 메가 콘스텔레이션에 적합한 위성 가시성 매트릭스 모델 및 설게 방식을 제안하였다.
세 번째는 위성 간 통신에서 광 통신 시스템을 활용하는 경우 종단간 라우팅에 대한 분석이다. 증가된 메가 콘스텔레이션 모델에서 더 효율적이고 빠른 신호 전송을 위해 광통신 시스템을 활용할 때 발생할 수 있는 지연 모델을 설계하였다. 실제 시스템에서 데이터 전송 모델에 고려되어 정확한 성능이 평가될 필요가 있음을 확인하였다. 또한, 위성 간 광통신 시스템의 장점 분석을 위해 패킷 정송, 핸드오버 전략 및 통신 방식(라디오/광학)에 따른 종단간 라우팅에서의 지연 성능을 라디오 주파수 대역 시스템과 비교/평가하였다.
본 연구는 그 동안 정지된 시스템에 서비스를 제공하던 위성통신에서 이동통신 시스템의 가능성을 확인하였고 저고도 시스템의 잠재역도 함께 확인할 수 있었다. 또한 새로운 저궤도 위성통신 네트워크에서의 효율적인 테이터 전송을 위한 시스템 설계와 더불어 그로 인해 발생할 수 있는 문제점에 대한 고려를 통해 더욱 현실적인 환경에서의 시스템 성능 평가로 제안한 방식들이 실제 시스템 개발 및 사용화에 적용 및 실현될 수 있을 것 이다.|Satellite communications are a type of wireless communication system that use geostationary orbit (GEO), medium-Earth orbit (MEO), or low-Earth orbit (LEO) satellites to provide an inter- continental data transmission and maritime or aerial communication services. In particular, because satellite communications are not affected by network damage from natural disasters (tolerance capability), these systems can provide temporary networks in emergency regions where ground infrastructure is paralyzed. However, GEO satellite-based networks, which are mainly employed in conventional satellite communications, have chronic problems such as extremely long delays and high costs. To overcome these difficulties, high throughput satellite (HTS) systems have been developed that can support a performance generally 20-times higher or more than those of traditional systems. In addition, GEO-based mobile communications are being studied along with the development of terrestrial mobile technologies. Despite the disadvantages of GEO satellite communications, satellite communications are currently receiving significant attention and will become a core technology for a three- dimensional communication design according to the 5G 3GPP non-terrestrial network (NTN) and the 6G standards in the near future. Therefore, in this study, 1) GEO satellite mobile services with high throughput satellite (HTS) technology and 2) a satellite network design with optical inter-satellite communication were researched. In a study of GEO satellite-based mobile services, there is an influential issue of a carrier frequency shift above 20 GHz owing to saturation of the lower frequency bands. Previously, the frequency bands from the L (1–2 GHz) to C (4–8 GHz) band have mainly been adopted; however, it is now necessary to provide services with high-frequency bands above the Ka band (20 GHz). Since satellites are located at very high altitudes, they are sensitive to weather conditions as the carrier frequency increases. Accordingly, we propose a satellite transmission power control method that can assist stable mobile satellite communication using the channel state information (CSI) of a ground-satellite link with HTS system. Two channel models are then applied to scrutinize the system performance according to channel variations, which are a Lutz’s land mobile satellite (LMS) channel as a representative satellite channel model and Nakagami-m fading as one of the statistical models. The proposed transmission power control approach is then evaluated for various user speeds at various altitudes of the MEO, LEO satellites and a high-altitude platform (HAP) as well as GEO satellite.
As mentioned above, satellite systems are attracting attention as one of the key technologies in 5G and 6G communications. LEO satellites have recently emerged as an alternative system that can complement the chronic problems of GEO satellites. For improved satellite communications, companies such as SpaceX, Amazon, and Blue Origin have developed a novel LEO satellite topology for broadband Internet services, which is a mega-constellation. The main purpose of a mega-constellation is to provide stable telecommunication services that deploy an enormous number of satellites. Owing to the shortened link distances between satellites resulting from their increased number, there have been many attempts to arrange the optical inter-satellite links (ISLs). We therefore propose a novel satellite visibility matrix and routing algorithm with optical ISLs when considering the time- varying characteristics of the LEO satellite topology. The visibility matrix was developed by analyzing the relative position changes of the neighboring satellites. In addition, the antenna movement angle between visible satellites was also investigated for strict optical antenna constraints owing to the very narrow beam divergence. The system performance was then evaluated through a comparison with the visibility matrix in prior studies in terms of the average end-to-end link distance and hop counts. As a result, we can verify that the proposed visibility matrix outperformed the previous study by 75.45 % in terms of the end-to-end link distance and 52.85% in terms of the hop counts in the mega-constellation architecture. Dynamic routing path discovery is required depending on the satellite topology variation caused by the movement of the LEO satellites. However, optical communications have delay overheads in the link establishment procedure due to the narrow beam divergence, and we propose a routing algorithm applied in a changing topology environment with a packet trans- mission and optical ISL. The algorithm utilizes an iterative path searching method to respond to a time-varying satellite topology. We evaluated the system performance by comparing the satellite net- works with RF and optical ISL environments in terms of the average hop count, end-to-end delay, and number of iterations in a route discovery.
Table Of Contents
Ⅰ. Introduction 1
1.1 Satellite Communication 1
1.2 Challenging Issue 3
1.2.1 High Frequency Band and Mobile Satellite Communication 3
1.2.3 Satellite Visibility in LEO Satellite Mega-Constellation 4
1.2.3 Satellite Routing Algorithm with Time-Varying Topology 5
1.3 Contribution 6
1.4 Overview of Thesis 7
Ⅱ. Transmission Power Control in Mobile Satellite Communication 9
2.1 Introduction 9
2.1.1 Related Work 11
2.1.2 Summary and Organization 13
2.2 Impact of User Mobility on MSS 14
2.2.1 System Model of Mobile Satellite Service 14
2.2.2 Performance Degradation by User Mobility 17
2.3 Transmit Power Control with Delayed Feedback CSI 19
2.3.1 System Model of Transmit Power Control Method 20
2.3.2 Channel Compensation by Delayed Feedback CSI 21
2.3.3 Controlled Transmit Power 23
2.4 Impact of Controlled Transmit Power 26
2.4.1 Outage and Over-Budget Probability 26
2.4.2 Power Consumption and Channel Capacity 29
2.5 Summary 33
Ⅲ. LEO Satellite Connectivity in Mega-Constellation with Optical ISL 37
3.1 Introduction 38
3.1.1 Related Work 39
3.1.2 Summary and Organization 40
3.2 Comparison of RF and Optical System 41
3.3 System Model of LEO Satellite Network 46
3.3.1 LEO Satellite Constellation Model 46
3.3.2 Coordinate System and Satellite Rank 47
3.4 Visibility Analysis of LEO Satellite Constellation 49
3.4.1 Variation Analysis of Link Distance and Antenna Steering 49
3.4.2 Serviceable Satellite Determination 49
3.4.3 Analysis Method for Reliable Inter-Satellite Link Connection 52
3.5 Simulation Results of Satellite Visibility 58
3.5.1 Angle between Serviceable Satellites 60
3.5.2 Elevation Angle Variation 62
3.5.3 Average Number of Visible Satellites for Beam Steerable Range 62
3.5.4 Average Antenna Steering Angle for Beam Steering Range 66
3.5.5 Relations between Antenna Steering Angle and Target Satellite Location in LEO Satellite Constellation 67
3.5.6 Link Connection Feasibility 69
3.5.7 Visibility Matrix Construction 71
3.5.8 Performance Evaluation and Comparison 71
3.6 Summary 74
Ⅳ. End-to-End Routing with Optical ISL in Mega-Constellation 77
4.1 Introduction 78
4.1.1 Related Work 79
4.1.2 Summary and Organization 81
4.2 Impact of Optical Communication on ISL Connection 82
4.2.1 Delay Overhead by Acquisition Process 83
4.2.2 Delay Overhead by Pointing Error 85
4.2.3 Impact of Optical Link in One Hop Data Transmission 86
4.3 System Model of End-to-End Routing with Optical ISL 89
4.3.1 Satellite Selection: Handover Strategy 89
4.3.2 Multiple Packet Transmission 91
4.3.3 Routing Path Discovery with ISL 93
4.4 Simulation Results of End-to-End Routing with Optical ISL 94
4.4.1 System Performance in End-to-End Routing 95
4.4.2 Performance Differences by Handover Strategy 97
4.5 Summary 98
Ⅴ. Conclusion 101
Bibliography 105
URI
http://dgist.dcollection.net/common/orgView/200000592128

http://hdl.handle.net/20.500.11750/16320
DOI
10.22677/thesis.200000592128
Degree
Doctor
Department
Information and Communication Engineering
Publisher
DGIST
Related Researcher
  • 곽정호 Kwak, Jeongho
  • Research Interests 클라우드 컴퓨팅; 엣지컴퓨팅; 네트워크 자원관리; 모바일 시스템
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Electrical Engineering and Computer Science Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE