Detail View

Deep learning-based automated analysis of red blood cells three-dimensional morphological changes in the storage lesion
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 문인규 -
dc.contributor.author Eunji Kim -
dc.date.accessioned 2022-07-07T02:29:14Z -
dc.date.available 2022-07-07T02:29:14Z -
dc.date.issued 2021 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000364438 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/16695 -
dc.description.abstract This paper presents a novel approach that automatically performs the immediate segmentation and classification of red blood cell storage lesions according to the storage period from phase images obtained with a digital holographic microscope. As a new approach, Pix2Pix-based network among deep learning technologies was proposed, which was compared with the existing U-net network. Our method showed excellent performance in red blood cell multi-class segmentation and classification accuracy with a high throughput of about 152 cells per second and a Dice coefficient of about 0.94. In addition, to evaluate the trained model, our method was applied to red blood cell images of 11 storage periods. In red blood cell images according to storage period, our method not only showed an excellent performance of about 95% in the confusion matrix, but was also in good agreement with previous results regarding changes in red blood cell markers(dominant shape) with storage period. Therefore, our method is believed to be useful as an automatic segmentation and classification method of red blood cell storage lesions by showing excellent performance in the identification of red blood cell storage lesions for safe blood transfusion. -
dc.description.statementofresponsibility N -
dc.description.tableofcontents Ⅰ. INTRODUCTION 1
Ⅱ. DIGITAL HOLOGRAPHIC MICROSCOPY(DHM) AND SAMPLE PREPARATION 6
2.1 Label-free off-axis DHM 6
2.2 Sample preparation 9
Ⅲ. DATA PREPROCESSING 10
Ⅳ. PROPOSED DEEP LEARNING MODEL 12
4.1 U-net 12
4.2 Pix2Pix 13
4.3 Construction of the patches and augmentation 16
4.4 Marker-based watershed algorithm 16
Ⅴ. EVALUATION METRIC 17
Ⅵ. EXPERIMENT RESULTS 18
6.1 Implementation details 18
6.2 Evaluation of multi-class RBC segmentation and classification performance 20
6.3 Classifications of RBCs based on storage durations & automated analysis of RBCs aging markers 20
Ⅶ. CONCLUSION 23
-
dc.format.extent 29 -
dc.language eng -
dc.publisher DGIST -
dc.subject Deep learning, Digital holographic microscopy, 딥러닝, 생성적 적대 신경망, 디지털 홀로그램 현미경, 적혈구 분류, 적혈구 분할 -
dc.title Deep learning-based automated analysis of red blood cells three-dimensional morphological changes in the storage lesion -
dc.title.alternative 딥러닝 기반 저장기간에 따른 적혈구 3차원 형상 변화 자동 분석 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000364438 -
dc.description.alternativeAbstract 본 논문은 디지털 홀로그램 현미경으로 얻은 위상 이미지에서 저장 기간에 따른 적혈구 저장 병변의 즉각적인 segmentation 및 classification을 자동으로 수행하는 새로운 접근 방식을 제시합니다. 새로운 접근 방식으로서 딥러닝 기술 중 Pix2Pix 기반 네트워크를 제안하였고, 이는 기존의 U-net 네트워크와 비교되었습니다. 우리의 방법은 RBC 다중 클래스 segmentation 및 classification 정확도에서 초당 약 152 셀의 높은 처리 속도와 약 0.94의 Dice coefficient로 우수한 성능을 보여주었습니다. 또한 학습된 모델을 평가하기 위해 우리의 방법은 11개의 저장 기간에 따른 적혈구 이미지에 적용되었습니다. 저장 기간에 따른 적혈구 이미지에서 우리의 방법은 confusion matrix에서 약 95%의 우수한 성능을 보였을 뿐만 아니라, 저장 기간에 따른 적혈구 마커(지배적인 모양)의 변화에 ​​관한 이전 결과와도 잘 일치하였습니다. 따라서 우리의 방법은 안전한 수혈을 위한 적혈구 저장 병변 판별에 있어 우수한 성능을 보임으로써, 적혈구 저장 병변의 자동 segmentation 및 classification 방법으로서 유용할 수 있다고 믿어집니다. -
dc.description.degree Master -
dc.contributor.department Robotics Engineering -
dc.identifier.bibliographicCitation Eunji Kim. (2021). Deep learning-based automated analysis of red blood cells three-dimensional morphological changes in the storage lesion. doi: 10.22677/thesis.200000364438 -
dc.contributor.coadvisor Okkyun Lee -
dc.date.awarded 2021/02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.RM 김67 202102 -
dc.contributor.alternativeDepartment 로봇공학전공 -
dc.embargo.liftdate 2023-02-28 -
dc.contributor.affiliatedAuthor Eunji Kim -
dc.contributor.affiliatedAuthor Inkyu Moon -
dc.contributor.affiliatedAuthor Okkyun Lee -
dc.contributor.alternativeName 김은지 -
dc.contributor.alternativeName Inkyu Moon -
dc.contributor.alternativeName 이옥균 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads