Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Hyobin -
dc.contributor.author Yang, Seungwon -
dc.contributor.author Kim, Suhwan -
dc.contributor.author Song, Jihun -
dc.contributor.author Park, Joonam -
dc.contributor.author Doh, Chil-Hoon -
dc.contributor.author Ha, Yoon-Cheol -
dc.contributor.author Kwon, Tae-Soon -
dc.contributor.author Lee, Yong Min -
dc.date.accessioned 2022-10-31T07:00:03Z -
dc.date.available 2022-10-31T07:00:03Z -
dc.date.created 2022-06-16 -
dc.date.issued 2022-08 -
dc.identifier.issn 2451-9103 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16969 -
dc.description.abstract The diffusion coefficient and exchange current density are the two dominant parameters that determine the electrochemical characteristics of the electrochemical battery model. Nevertheless, both parameter values are generally adopted from well-known literature or experimental data measured under limited conditions and are sometimes overfitted to match actual electrochemical behaviors without full consideration. Herein, the diffusion coefficients and exchange current densities of a LiNi0.4Mn0.3Co0.3O2/Li cell are measured and applied to the electrochemical model (based on Newman's model) using four different electrochemical methods: galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Without any fitting, the model adopting the diffusion coefficient and exchange current density measured from PITT and EIS, respectively, simulates the actual voltage-capacity profiles well. Thus, this case study provides a valuable opportunity to understand the advantages and disadvantages of each measurement method in obtaining key experimental parameters for electrochemical battery models. -
dc.language English -
dc.publisher Elsevier -
dc.title Understanding the effects of diffusion coefficient and exchange current density on the electrochemical model of lithium-ion batteries -
dc.type Article -
dc.identifier.doi 10.1016/j.coelec.2022.100986 -
dc.identifier.wosid 000799957200002 -
dc.identifier.scopusid 2-s2.0-85128253378 -
dc.identifier.bibliographicCitation Current Opinion in Electrochemistry, v.34 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Electrochemical model -
dc.subject.keywordAuthor Diffusion coefficient -
dc.subject.keywordAuthor Exchange current density -
dc.subject.keywordAuthor GITT -
dc.subject.keywordAuthor PITT -
dc.subject.keywordAuthor EIS -
dc.subject.keywordPlus MATHEMATICAL-MODEL -
dc.subject.keywordPlus THIN-FILM -
dc.subject.keywordPlus CATHODIC PERFORMANCE -
dc.subject.keywordPlus IRON PHOSPHATE -
dc.subject.keywordPlus AGING MODEL -
dc.subject.keywordPlus SIMULATION -
dc.subject.keywordPlus STATE -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus INSERTION -
dc.subject.keywordPlus DESIGN -
dc.citation.title Current Opinion in Electrochemistry -
dc.citation.volume 34 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Materials Science, Multidisciplinary -
dc.type.docType Review -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials & Systems LAB 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE