Detail View

Flexible kesterite thin-film solar cells under stress
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Flexible kesterite thin-film solar cells under stress
Issued Date
2022-11
Citation
Park, H.K. (2022-11). Flexible kesterite thin-film solar cells under stress. npj Flexible Electronics, 6(91). doi: 10.1038/s41528-022-00221-4
Type
Article
Keywords
GRAIN-BOUNDARIESCU2ZNSNS4EFFICIENCYSODIUMDEFECTSCZTSSE
ISSN
2397-4621
Abstract
Understanding the stress-induced phenomena is essential for improving the long-term application of flexible solar cells to non-flat surfaces. Here, we investigated the electronic band structure and carrier transport mechanism of Cu2ZnSn(S,Se)4 (CZTSSe) photovoltaic devices under mechanical stress. Highly efficient flexible CZTSSe devices were fabricated controlling the Na incorporation. The electronic structure of CZTSSe was deformed with stress as the band gap, valence band edge, and work function changed. Electrical properties of the bent CZTSSe surface were probed by Kelvin probe force microscopy and the CZTSSe with Na showed less degraded carrier transport compared to the CZTSSe without Na. The local open-circuit voltage (VOC) on the bent CZTSSe surface decreased due to limited carrier excitation. The reduction of local VOC occurred larger with convex bending than in concave bending, which is consistent with the degradation of device parameters. This study paves the way for understanding the stress-induced optoelectronic changes in flexible photovoltaic devices. © 2022, The Author(s).
URI
http://hdl.handle.net/20.500.11750/17119
DOI
10.1038/s41528-022-00221-4
Publisher
Nature Publishing Group
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

양기정
Yang, Kee-Jeong양기정

Division of Energy & Environmental Technology

read more

Total Views & Downloads