Detail View

Memory-inspired spiking hyperdimensional network for robust online learning
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Memory-inspired spiking hyperdimensional network for robust online learning
Issued Date
2022-05
Citation
Zou, Zhuowen. (2022-05). Memory-inspired spiking hyperdimensional network for robust online learning. Scientific Reports, 12(1). doi: 10.1038/s41598-022-11073-3
Type
Article
Keywords
NEURAL-NETWORKSRECOGNITIONPOWER
ISSN
2045-2322
Abstract
Recently, brain-inspired computing models have shown great potential to outperform today's deep learning solutions in terms of robustness and energy efficiency. Particularly, Spiking Neural Networks (SNNs) and HyperDimensional Computing (HDC) have shown promising results in enabling efficient and robust cognitive learning. Despite the success, these two brain-inspired models have different strengths. While SNN mimics the physical properties of the human brain, HDC models the brain on a more abstract and functional level. Their design philosophies demonstrate complementary patterns that motivate their combination. With the help of the classical psychological model on memory, we propose SpikeHD, the first framework that fundamentally combines Spiking neural network and hyperdimensional computing. SpikeHD generates a scalable and strong cognitive learning system that better mimics brain functionality. SpikeHD exploits spiking neural networks to extract low-level features by preserving the spatial and temporal correlation of raw event-based spike data. Then, it utilizes HDC to operate over SNN output by mapping the signal into high-dimensional space, learning the abstract information, and classifying the data. Our extensive evaluation on a set of benchmark classification problems shows that SpikeHD provides the following benefit compared to SNN architecture: (1) significantly enhance learning capability by exploiting two-stage information processing, (2) enables substantial robustness to noise and failure, and (3) reduces the network size and required parameters to learn complex information.
URI
http://hdl.handle.net/20.500.11750/17161
DOI
10.1038/s41598-022-11073-3
Publisher
Nature Publishing Group
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김예성
Kim, Yeseong김예성

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads