Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lim, Seyeong -
dc.contributor.author Han, Sanghun -
dc.contributor.author Kim, Dohyun -
dc.contributor.author Min, Jihyun -
dc.contributor.author Choi, Jongmin -
dc.contributor.author Park, Taiho -
dc.date.accessioned 2022-12-13T09:40:10Z -
dc.date.available 2022-12-13T09:40:10Z -
dc.date.created 2022-12-12 -
dc.date.issued 2023-01 -
dc.identifier.issn 0935-9648 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17235 -
dc.description.abstract The power conversion efficiency of CsPbI3 perovskite quantum dot (PQD) solar cells shows increase from 10.77% to 16.2% in a short period owing to advances in material and device design for solar cells. However, the device stability of CsPbI3 PQD solar cells remains poor in ambient conditions, which requires an in-depth understanding of the degradation mechanisms of CsPbI3 PQDs solar cells in terms of both inherent material properties and device characteristics. Along with this analysis, advanced strategies to overcome poor device stability must be conceived. In this review, fundamental mechanisms that cause the degradation of CsPbI3 PQD solar cells are discussed from the material property and device viewpoints. In addition, based on detailed insights into degradation mechanisms in CsPbI3 PQD solar cells, various strategies are introduced to improve the stability of CsPbI3 PQD solar cells. Finally, future perspectives and challenges are presented to achieve highly durable CsPbI3 PQD solar cells. The investigation of the degradation mechanisms and the stability enhancement strategies can pave the way for the commercialization of CsPbI3 PQD solar cells. © 2022 Wiley-VCH GmbH -
dc.language English -
dc.publisher Wiley -
dc.title Key Factors Affecting the Stability of CsPbI3 Perovskite Quantum Dot Solar Cells: A Comprehensive Review -
dc.type Article -
dc.identifier.doi 10.1002/adma.202203430 -
dc.identifier.wosid 000888396600001 -
dc.identifier.scopusid 2-s2.0-85140036464 -
dc.identifier.bibliographicCitation Advanced Materials, v.35, no.4 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor device stability -
dc.subject.keywordAuthor environmental stability -
dc.subject.keywordAuthor phase stability -
dc.subject.keywordAuthor solar cells -
dc.subject.keywordAuthor CsPbI3 perovskite quantum dots -
dc.subject.keywordPlus HALIDE PEROVSKITES -
dc.subject.keywordPlus ALPHA-CSPBI3 PEROVSKITE -
dc.subject.keywordPlus CH3NH3PBI3 PEROVSKITE -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus NANOCRYSTALS -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus DEGRADATION -
dc.subject.keywordPlus MECHANISMS -
dc.subject.keywordPlus ELECTRON TRANSPORTING LAYER -
dc.citation.number 4 -
dc.citation.title Advanced Materials -
dc.citation.volume 35 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Review -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Chemical & Energy Materials Engineering (CEME) Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE