Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Jong Seok -
dc.contributor.author Jung, Seungwon -
dc.contributor.author Kwak, Hiram -
dc.contributor.author Han, Yoonjae -
dc.contributor.author Kim, Suhwan -
dc.contributor.author Lim, Jongwoo -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Jung, Yoon Seok -
dc.date.accessioned 2023-01-10T15:10:10Z -
dc.date.available 2023-01-10T15:10:10Z -
dc.date.created 2022-12-22 -
dc.date.issued 2023-01 -
dc.identifier.issn 2405-8297 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17371 -
dc.description.abstract Halide solid electrolytes are a promising candidate for all-solid-state Li batteries (ASLBs) owing to their mechanical sintering ability and excellent (electro)chemical oxidation stability. However, these advantages are counteracted by the lower Li+ conductivities and higher specific densities compared with those of sulfides. Herein, a novel halide-sulfide hybrid catholyte design for Ni-rich layered oxide cathodes for ASLBs is reported. In a hybrid catholyte, Li3YCl6 (0.40 mS cm−1) coatings protect the surface of Li[Ni0.88Co0.11Al0.01]O2 while Li6PS5Cl (1.80 mS cm−1) serves as a Li+ highway. Li[Ni0.88Co0.11Al0.01]O2 cathodes with an optimal fraction of Li3YCl6, 10 wt% with respect to Li [Ni0.88Co0.11Al0.01]O2, substantially outperform electrodes using either Li6PS5Cl or Li3YCl6 in terms of capacity (202 vs. 171 or 191 mA h g−1 at 0.1C, respectively), initial Coulombic efficiency, rate capability, and cycling performance. The superiority of Li3YCl6 for interfacial stability in the Li3YCl6-coated electrode to the electrode without Li3YCl6 is confirmed by complementary analysis. Moreover, the digital twin model is successfully established and reveals electrically isolated Li[Ni0.88Co0.11Al0.01]O2 particles when 14 wt% Li3YCl6 is used. This insight leads to the development of a mixed conductor coating consisting of Li3YCl6 and carbon, further enhancing the performance: e.g., 134 vs. 53 mA h g−1 at 2C. © 2022 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries -
dc.type Article -
dc.identifier.doi 10.1016/j.ensm.2022.11.038 -
dc.identifier.wosid 000976876100001 -
dc.identifier.scopusid 2-s2.0-85143344928 -
dc.identifier.bibliographicCitation Energy Storage Materials, v.55, pp.193 - 204 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor All-solid-state lithium batteries -
dc.subject.keywordAuthor Halide solid electrolytes -
dc.subject.keywordAuthor Sulfide solid electrolytes -
dc.subject.keywordAuthor Digital twins -
dc.subject.keywordAuthor Electrochemical stabilities -
dc.subject.keywordPlus LITHIUM-ION -
dc.subject.keywordPlus COMPOSITE CATHODES -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus INTERFACE -
dc.subject.keywordPlus LICOO2 -
dc.subject.keywordPlus LINI0.5MN1.5O4 -
dc.citation.endPage 204 -
dc.citation.startPage 193 -
dc.citation.title Energy Storage Materials -
dc.citation.volume 55 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials & Systems LAB 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE