Detail View

A microcrack propagation-based life prediction model for lithium-ion batteries with Ni-rich cathode materials
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Park, Sun Ho -
dc.contributor.author Lee, Hyobin -
dc.contributor.author Park, Joonam -
dc.contributor.author Roh, Youngjoon -
dc.contributor.author Byun, Seoungwoo -
dc.contributor.author Lim, Jaejin -
dc.contributor.author Jung, Seungwon -
dc.contributor.author Kim, Nayeon -
dc.contributor.author Lee, Kang Taek -
dc.contributor.author Lee, Yong Min -
dc.date.accessioned 2023-01-10T15:40:10Z -
dc.date.available 2023-01-10T15:40:10Z -
dc.date.created 2023-01-05 -
dc.date.issued 2023-02 -
dc.identifier.issn 2352-152X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17372 -
dc.description.abstract The formation and growth of solid electrolyte interphase (SEI) on the anode are key parameters governing battery life prediction models of lithium-ion batteries (LiBs). However, as conventional battery life prediction models do not reflect other degradation parameters such as crack formation and propagation in Ni-rich cathode materials, their accuracy is greatly reduced as the nickel content increases in layered oxide cathode materials. Herein, we propose an advanced prediction model that includes both crack propagation and SEI growth. The reliability of this microcrack propagation-based life prediction model is verified using experimental data of over 50 commercial 18650 LiB cells, which are tested under depths of discharge and current rates, from 500 to 5000 cycles. The proposed model predicts capacity retention values with less than 5 % error, even in practical operations of energy storage systems and electric vehicles, providing a standard solution for predicting the cycle life of LiBs with Ni-rich cathode materials. © 2022 -
dc.language English -
dc.publisher Elsevier Ltd -
dc.title A microcrack propagation-based life prediction model for lithium-ion batteries with Ni-rich cathode materials -
dc.type Article -
dc.identifier.doi 10.1016/j.est.2022.106420 -
dc.identifier.wosid 000912251400001 -
dc.identifier.scopusid 2-s2.0-85144604454 -
dc.identifier.bibliographicCitation Park, Sun Ho. (2023-02). A microcrack propagation-based life prediction model for lithium-ion batteries with Ni-rich cathode materials. Journal of Energy Storage, 58. doi: 10.1016/j.est.2022.106420 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Life prediction model -
dc.subject.keywordAuthor Microcrack propagation -
dc.subject.keywordAuthor Normalized perimeter change -
dc.subject.keywordAuthor Ni-rich cathode material -
dc.subject.keywordAuthor Lithium-ion battery -
dc.subject.keywordPlus SOLID-ELECTROLYTE-INTERPHASE -
dc.subject.keywordPlus CAPACITY FADE -
dc.subject.keywordPlus CHEMICAL DEGRADATION -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus SIMULATION -
dc.subject.keywordPlus STATE -
dc.citation.title Journal of Energy Storage -
dc.citation.volume 58 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Energy & Fuels -
dc.relation.journalWebOfScienceCategory Energy & Fuels -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads