Detail View

Dynamic Multi-Resource Optimization for Storage Acceleration in Cloud Storage Systems
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Dynamic Multi-Resource Optimization for Storage Acceleration in Cloud Storage Systems
Issued Date
2023-03
Citation
Lee, Kyungtae. (2023-03). Dynamic Multi-Resource Optimization for Storage Acceleration in Cloud Storage Systems. IEEE Transactions on Services Computing, 16(2), 1079–1092. doi: 10.1109/TSC.2022.3173333
Type
Article
Author Keywords
Cloud object storage systemstorage accelerationmulti-resource optimizationdynamic controlhybrid encoding
ISSN
1939-1374
Abstract
Demand for using cloud object storage has been increasing in order to efficiently manage a large number of binary large objects (BLOBs), including videos, photos and documents. Although many companies and institutions are currently trying to utilize public cloud object storage services such as AWS Simple Storage Service (S3), most of existing encoding systems for safe storage of data have not been optimized for current cloud object storage architecture. In this paper, we propose a novel dynamic extreme erasure encoding algorithm, namely DexEncoding aiming to maximize the utility of clients where the encoding locations in the cloud storage architecture are dynamically optimized between gateway and storage servers with respect to the time-varying cloud environment. Here, the utility captures the satisfaction of clients for the speed of data storage and fairness among clients. DexEncoding efficiently resolves resource bottlenecks by adapting to the dynamic network, processing and storage resource availability and storage request. Real measurement-driven simulations demonstrate that the proposed DexEncoding algorithm drastically outperforms that applied in the state-of-the-art object storage systems in a perspective of clients satisfaction. IEEE
URI
http://hdl.handle.net/20.500.11750/17411
DOI
10.1109/TSC.2022.3173333
Publisher
Institute of Electrical and Electronics Engineers
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

곽정호
Kwak, Jeongho곽정호

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads