Detail View

Thermoelectric performance of novel single-layer ZrTeSe4
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Thermoelectric performance of novel single-layer ZrTeSe4
Issued Date
2022-11
Citation
Yun, Won Seok. (2022-11). Thermoelectric performance of novel single-layer ZrTeSe4. Physical Chemistry Chemical Physics, 24(46), 28250–28256. doi: 10.1039/D2CP03092F
Type
Article
Keywords
MONOLAYERBULKZRS2
ISSN
1463-9076
Abstract
In energy conversion techniques, two-dimensional (2D) thermoelectric materials with high performance are strongly required. This study scrutinizes the electronic and thermoelectric properties of 2D single-layer (1L) ZrTeSe4 based on first-principles calculations combined with Boltzmann transport theory. First-principles molecular dynamics simulations and phonon calculations confirm the thermodynamic stability of 1L-ZrTeSe4. Furthermore, the electron mobility of 1L-ZrTeSe4 is calculated to be ∼5706 cm2 V−1 s−1, which is much higher than that of the typical 2D semiconducting materials. Intriguingly, the calculated lattice thermal conductivity of 1L-ZrTeSe4 is found to be 3.16 W m−1 K−1 at room temperature, which is relatively smaller than that of 2D transition metal dichalcogenides. The maximum figure of merit ZT of 1L-ZrTeSe4 at 900 K is ∼0.8 for both p- and n-type doping at optimal carrier concentrations. As ZT could be improved through the manipulation of its electronic structure, this is an important clue indicating the enormous potential of 1L-ZrTeSe4 in thermoelectric application. © 2022 The Royal Society of Chemistry.
URI
http://hdl.handle.net/20.500.11750/17418
DOI
10.1039/D2CP03092F
Publisher
Royal Society of Chemistry
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이현준
Lee, Hyeon-Jun이현준

Division of Nanotechnology

read more

Total Views & Downloads