Detail View

Intercalation of Ammonium Cationic Ligands Enabled Grain Surface Passivation in Sequential-Deposited Perovskite Solar Cells
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Intercalation of Ammonium Cationic Ligands Enabled Grain Surface Passivation in Sequential-Deposited Perovskite Solar Cells
Issued Date
2023-01
Citation
Lee, Hock Beng. (2023-01). Intercalation of Ammonium Cationic Ligands Enabled Grain Surface Passivation in Sequential-Deposited Perovskite Solar Cells. Advanced Energy & Sustainability Research, 4(1). doi: 10.1002/aesr.202200128
Type
Article
Author Keywords
crystal growthsdefectsgrain boundariespassivator adsorptionssurfaces and interfaces
Keywords
EFFICIENCY
ISSN
2699-9412
Abstract
Solution-processed formamidinium lead iodide (FAPbI(3)) perovskite typically contains a high number of ionic defects that are intrinsically formed during film formation. To reduce the defects, postsynthetic surface passivation treatment is widely practiced. However, the practicality of the surface passivation approach is limited by the poor coverage and incomplete adsorption of passivators into the defective sites. Unprecedentedly, the use of 4-(trifluoromethyl)benzylammonium iodide (CF(3)BZAI) is demonstrated as a novel passivator additive for sequentially deposited perovskite films. Due to its unique molecular structure and trifluoromethyl (-CF3) moiety, CF(3)BZAI is expected to have enhanced adsorption with defect sites during the film formation. Owing to grain surface passivation, the CF(3)BZAI-intercalated FAPbI(3) (target) film has enhanced morphology and crystallinity as well as significantly fewer defects than the normal FAPbI(3) film. Interestingly, the intercalation of CF(3)BZAI passivators does not lead to the formation of a low-dimensional perovskite phase in FAPbI(3) films. The best perovskite solar cell (PSC) device based on the target film achieves a maximum efficiency of approximate to 22.4%, which is much higher than the efficiency (approximate to 20.7%) of the normal device. CF(3)BZAI-assisted grain surface passivation is a facile yet effective strategy to enhance the performance and stability of FAPbI(3)-based PSCs. © 2022 The Authors.
URI
http://hdl.handle.net/20.500.11750/17471
DOI
10.1002/aesr.202200128
Publisher
Wiley
Show Full Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

이종수
Lee, Jong-Soo이종수

Department of Energy Science and Engineering

read more

Total Views & Downloads