Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Hojeong -
dc.contributor.author Sandercock, Thomas G. -
dc.contributor.author Heckman, C. J. -
dc.date.available 2017-07-11T04:42:23Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-08 -
dc.identifier.issn 1741-2560 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2593 -
dc.description.abstract Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations. © 2015 IOP Publishing Ltd. -
dc.language English -
dc.publisher Institute of Physics Publishing -
dc.title An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements -
dc.type Article -
dc.identifier.doi 10.1088/1741-2560/12/4/046025 -
dc.identifier.scopusid 2-s2.0-84937510620 -
dc.identifier.bibliographicCitation Journal of Neural Engineering, v.12, no.4 -
dc.subject.keywordAuthor muscle modeling -
dc.subject.keywordAuthor activation dynamics -
dc.subject.keywordAuthor cat soleus -
dc.subject.keywordAuthor spike excitation -
dc.subject.keywordAuthor muscle movement -
dc.subject.keywordAuthor computer simulation -
dc.subject.keywordPlus Action Potential -
dc.subject.keywordPlus Action Potentials -
dc.subject.keywordPlus Activation Dynamics -
dc.subject.keywordPlus Adult -
dc.subject.keywordPlus Animal -
dc.subject.keywordPlus Animals -
dc.subject.keywordPlus Article -
dc.subject.keywordPlus Biological Model -
dc.subject.keywordPlus Calcium -
dc.subject.keywordPlus Calcium Signaling -
dc.subject.keywordPlus CARDIAC-MUSCLE -
dc.subject.keywordPlus CAT -
dc.subject.keywordPlus Cat Soleus -
dc.subject.keywordPlus Cats -
dc.subject.keywordPlus Chemical Activation -
dc.subject.keywordPlus Computer Simulation -
dc.subject.keywordPlus Controlled Study -
dc.subject.keywordPlus CROSS-BRIDGE KINETICS -
dc.subject.keywordPlus DYNAMICS -
dc.subject.keywordPlus Feline Model -
dc.subject.keywordPlus Force Transformations -
dc.subject.keywordPlus FROG SKELETAL-MUSCLE -
dc.subject.keywordPlus Gait -
dc.subject.keywordPlus Human -
dc.subject.keywordPlus Humans -
dc.subject.keywordPlus INDUCED FORCE DEPRESSION -
dc.subject.keywordPlus Large Scale Simulations -
dc.subject.keywordPlus LENGTH DEPENDENCE -
dc.subject.keywordPlus LOCOMOTION -
dc.subject.keywordPlus MATHemATICAL-MODEL -
dc.subject.keywordPlus Models, Neurological -
dc.subject.keywordPlus Motoneuron -
dc.subject.keywordPlus Motor Neurons -
dc.subject.keywordPlus MOTOR UNITS -
dc.subject.keywordPlus Muscle -
dc.subject.keywordPlus Muscle Contraction -
dc.subject.keywordPlus Muscle Excitation -
dc.subject.keywordPlus Muscle Isometric Contraction -
dc.subject.keywordPlus Muscle Length -
dc.subject.keywordPlus Muscle Modeling -
dc.subject.keywordPlus Muscle Movement -
dc.subject.keywordPlus Muscle Strength -
dc.subject.keywordPlus Muscle, Skeletal -
dc.subject.keywordPlus Musculoskeletal System Parameters -
dc.subject.keywordPlus Nonhuman -
dc.subject.keywordPlus Physiological Factors -
dc.subject.keywordPlus Physiological Models -
dc.subject.keywordPlus Physiology -
dc.subject.keywordPlus Priority Journal -
dc.subject.keywordPlus SARCOPLASMIC-RETICULUM -
dc.subject.keywordPlus SKELETAL-MUSCLE -
dc.subject.keywordPlus Soleus Muscle -
dc.subject.keywordPlus Spike Excitation -
dc.subject.keywordPlus Spinal Motoneurons -
dc.subject.keywordPlus Static and Dynamic Conditions -
dc.subject.keywordPlus STRIATED-MUSCLE -
dc.subject.keywordPlus Waveform -
dc.citation.number 4 -
dc.citation.title Journal of Neural Engineering -
dc.citation.volume 12 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Biotechnology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE