Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Skinner, John J. -
dc.contributor.author Yu, Wookyung -
dc.contributor.author Gichana, Elizabeth K. -
dc.contributor.author Baxa, Michael C. -
dc.contributor.author Hinshaw, James R. -
dc.contributor.author Freed, Karl F. -
dc.contributor.author Sosnick, Tobin R. -
dc.date.available 2017-07-11T05:25:10Z -
dc.date.created 2017-04-10 -
dc.date.issued 2014-11-11 -
dc.identifier.issn 0027-8424 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2637 -
dc.description.abstract Long-time molecular dynamics (MD) simulations are now able to fold small proteins reversibly to their native structures [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. These results indicate that modern force fields can reproduce the energy surface near the native structure. To test how well the force fields recapitulate the other regions of the energy surface, MD trajectories for a variant of protein G are compared with data from site-resolved hydrogen exchange (HX) and other biophysical measurements. Because HX monitors the breaking of individual H-bonds, this experimental technique identifies the stability and H-bond content of excited states, thus enabling quantitative comparison with the simulations. Contrary to experimental findings of a cooperative, all-or-none unfolding process, the simulated denatured state ensemble, on average, is highly collapsed with some transient or persistent native 2° structure. The MD trajectories of this protein G variant and other small proteins exhibit excessive intramolecular H-bonding even for the most expanded conformations, suggesting that the force fields require improvements in describing H-bonding and backbone hydration. Moreover, these comparisons provide a general protocol for validating the ability of simulations to accurately capture rare structural fluctuations. -
dc.publisher National Academy of Sciences -
dc.title Benchmarking all-atom simulations using hydrogen exchange -
dc.type Article -
dc.identifier.doi 10.1073/pnas.1404213111 -
dc.identifier.scopusid 2-s2.0-84909592559 -
dc.identifier.bibliographicCitation Proceedings of the National Academy of Sciences of the United States of America, v.111, no.45, pp.15975 - 15980 -
dc.subject.keywordAuthor molecular dynamics -
dc.subject.keywordAuthor unfolded state -
dc.subject.keywordAuthor denatured states -
dc.subject.keywordAuthor HX -
dc.subject.keywordAuthor protein folding -
dc.subject.keywordPlus MOLECULAR-DYNAMICS SIMULATIONS -
dc.subject.keywordPlus FAST-FOLDING PROTEINS -
dc.subject.keywordPlus UNFOLDED-STATE -
dc.subject.keywordPlus FRET SPECTROSCOPY -
dc.subject.keywordPlus LAMBDA-REPRESSOR -
dc.subject.keywordPlus RIBONUCLEASE-A -
dc.subject.keywordPlus EXCITED-STATES -
dc.subject.keywordPlus BOND FORMATION -
dc.subject.keywordPlus MODELS -
dc.subject.keywordPlus DENATURANT -
dc.citation.endPage 15980 -
dc.citation.number 45 -
dc.citation.startPage 15975 -
dc.citation.title Proceedings of the National Academy of Sciences of the United States of America -
dc.citation.volume 111 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Brain Sciences Laboratory of Protein Biophysics 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE